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Abstract—Artificial intelligence is effectively utilized for hand
gesture classification in myoelectric systems. In this study, hand
movement classification is performed with ML algorithms using
electromyography (EMG) signals of 7 hand gestures. The Hilbert-
Huang Transform (HHT) was applied to the preprocessed EMG
signals to obtain the Hilbert-Huang spectrum (HHS). Six differ-
ent Gray Level Co-occurrence Matrix (GLCM)-based features
were extracted from HHS images. In order to validate the
proposed method, the same features were extracted from the
snapshots of EMG signals and intrinsic mode functions (IMF)
extracted by empirical mode decomposition (EMD), separately.
These features are classified with 29 different Machine learning
(ML) approaches in the MATLAB® environment. Among these
three approaches, the HHS-based novel method yielded the
best performance, with an accuracy of 90.87% from the Cubic
Support Vector Machine (SVM). The novel HHS and GLCM-
based approach may be used in EMG-based biomedical systems
as a promising alternative.

Index Terms—Electromyography, GLCM, time-frequency
analysis, machine learning, EMD.

I. INTRODUCTION

A surface electromyogram (sEMG) is a non-invasive, in-
expensive, and effective tool for electrical muscle activity to
control movement assistive devices and rehabilitate physically
disabled people [1]. Especially, hand gesture classification
from sEMG signals takes an important place in the im-
plementation of myoelectric-based biomedical systems, such
as hand prostheses, exoskeletons, sign language, and virtual
reality [2]. Artificial intelligence (AI) approaches have shown
significant success in the recognition of hand gestures from
sEMG signals. Machine learning (ML)-based methods stand
out from the other AI approaches regarding their applicability,
especially in the myoelectric-based human-machine interface
(HMI) applications designed for personal usage [3], [4]. ML
methods have the potential to achieve the desired success with
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less computation time and small datasets that require low
hardware resources. One should note that all advantages of
ML methods depend on the selected feature for representing
the sEMG signals.

The distinct patterns in sEMG signal related to the specific
hand gestures can be represented accurately using different
parameters. Obtaining such parameters, namely the feature
extraction step directly affects the performance of the selected
ML method. Variety of features extracted in the time domain
(TD) [5], frequency domain (FD) [6], both TD and FD [7], and
also in the joint time-frequency (TF) domain [8] have yielded
significant performance in ML-based hand gesture classifica-
tion applications. Besides, the studies in this field continue to
explore well-defined muscles for sEMG electrode placement,
ideal features, and also ML models with low complexity to
enhance the effectiveness of myoelectric devices.

Gray Level Co-occurrence Matrix (GLCM) method, which
computes the occurrence of gray-level intensities in neighbor-
ing pixels, has been used as a statistical approach to extract
texture features from biomedical images [9]. Extraction and
analysis of features from various image-based methods by
using GLCM and texture-based approaches provide benefits
in many areas from disease diagnosis or detection to classifi-
cation of various biomedical data [9], [10]. In the literature,
there are some examples of effective features derived from
GLCM like variance, energy, contrast, correlation, etc.

In this study, the GLCM method is used to represent
gesture-related sEMG signals in an informative way to im-
prove the performance of ML in myoelectric-controlled sys-
tems. First, a TF representation (TFR) is implemented by
using the Hilbert-Huang Transform (HHT), which ensures
instantaneous specifications in terms of frequency and ampli-
tude in the joint TF domain. HHT provides more localized
instantaneous frequency values than traditional TFA methods
like Short-Time Fourier Transform (STFT), Wavelet Trans-
form (WT) [11]. Then, GLCM features are extracted from
the high-resolution TFR image obtained by the HHS method.
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Fig. 1. The framework of this study.

Various well-known ML methods were applied to investigate
the performance of the proposed feature extraction approach.

II. RELATED WORK

In this section, we review some remarkable studies that use
sEMG and ML-based methods for hand gesture classification
to improve the performance of myoelectric-based systems.
Arozi et al. [7] performed the pattern recognition study for 9
finger movements. They applied principal component analysis
(PCA) to reduce the feature set and yielded an average accu-
racy of 86.70%. Rabin et al. [8] performed the classification
of 6 movements applying the k-nearest neighbors algorithm
(kNN) on the STFT features after implementing the PCA, and
obtained an accuracy of 77.30%. Devaraj et al. [4] yielded the
accuracy of 93.00% using TD features of seven movements
with the kNN algorithm. Benalcazar et al. [3] obtained an
accuracy of 86.00% with kNN for 5 movements. Sattar et
al. [5] performed the recognition of 4 movements via the
TD feature, and yielded an average accuracy of 90.70% with
the kNN algorithm. Using TD and FD attributes together or
separately ensure good classification performance. This study
aims to present a potentially successful approach that best
represents relevant information by using the features extracted
from TFRs that contain both time and frequency information
of the underlying signal.

III. METHODS

This study proposes a novel GLCM-based feature extraction
method from the 3D Hilbert-Huang spectra of sEMG signals
for the classification of hand gestures. Well-known ML meth-
ods are used to classify the HHS-based features. Also, the
proposed method is compared to the features extracted from
the snapshots of EMG signals and the IMFs. An illustration
of the methodological strategy is shown in Fig. 1.

A. Dataset

In this study, sEMG signals dataset presented in [12]
were used. EMG signals are recorded from 4 surface bipolar
electrodes, which represent the approximate position of 4
surface muscles (extensor carpi radialis, extensor carpi ulnaris,

flexor carpi radialis, and flexor carpi ulnaris). The data was
collected from the right hands of 30 healthy subjects and were
recorded at a sampling frequency of 2 kHz. Each participant
performed 7 specific hand gestures (Fig. 2), which are rest,
wrist extension, wrist flexion, wrist radial deviation and ulnar
deviation, punch, and open hand in five repetitions. Each
gesture was performed in 6 s.

Fig. 2. The used hand movements: a) rest, b) extension, c) flexion, d) radial
deviation, e) ulnar deviation, f) punch, and g) open hand.

B. Pre-processing

In order to clear noise from the environment, such as inter-
nal organs, electrical devices, or neighboring muscles, a digital
bandpass filter with a pass-band of 50-500 Hz and a notch filter
at 50 Hz were applied to the recorded sEMG signals. Then, the
signals were segmented into 4 s partitions, which represent the
steady-states of EMG signals, to eliminate 1 s transient states
at the beginning and end [1]. Then, windowing was applied
to the 4 s signals by a 200 ms sliding window with the 50
ms increment. As a result, 77 EMG segments were obtained
from a 4 s signal. In total, 11550 segments (30 subjects x 5
repetitions x 77 segments) were obtained for each gesture.

C. Hilbert-Huang Transform

HHT is an adaptive signal decomposition technique that
is used for the processing of non-stationary and non-linear
signals like EMG. The analysis of EMG with HHT provides
an effective result by specifying motor units and eliminating
noise from outside of muscles to extract appropriate EMG
features. HHT is composed of two basic steps: empirical mode
decomposition (EMD), and the Hilbert Transform (HT).
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1) Emprical Mode Decomposition: The EMG signals are
adaptively decomposed into a finite number of free intrinsic
mode functions (IMF) as IMFi(t), i = 1, 2, · · · , N , where
N is the number of intrinsic modes. As such, x (t) may be
represented as;

x(t) =

N∑
i=1

IMFi(t) + r(t) (1)

where r(t) is the residue of the signal, from which no IMF
can be extracted [13].

2) Selection of IMFs: The most critical step in HHT is
the selection of the optimal IMFs to represent the signal. The
statistical significance-based (t− test) method is conducted in
our experiments. In the t − test method, the h-value, which
specifies whether the data distribution is normal, and the p-
value, which specifies the statistical significance of data, are
utilized. The threshold was chosen as p = 0.05. The p and
h-values of each IMF were calculated, and it was aimed to
use IMFs with the greatest p-values. Therefore, IMFs with the
three highest p-values were selected.

3) Hilbert Transform: The Hilbert transform was per-
formed using a combination of selected IMFs. The Hilbert
transform of the signal x (t) is described as follows:

H[x(t)] = y(t) =
1

π
P

∫ ∞

−∞

x(τ)

t− τ
dτ (2)

where P specifies the Cauchy principal value. An analytical
signal z (t) may be obtained from y(t) as:

z(t) = x(t) + iy(t) = a(t)ejθ(t) (3)

The instantaneous amplitude (a(t)), instantaneous phase (θ(t))
and instantaneous frequency (ω(t) = dθ(t)/dt) are instanta-
neous characteristics of the signal. Using the HT, the original
EMG segment may be represented as follows (4):

x(t) =

n∑
j=1

aj(t)e
i
∫
ωj(t)dt (4)

where n denotes the number of selected IMFs. By the
instantaneous features of HT, amplitude and instantaneous
frequency may be obtained as functions of time H (ω, t). HHS
provides a 3D representation that contains a(t), θ(t) and ω(t)
information of the analyzed signal as a TFR [14].

D. Feature Extraction

In ML applications, feature extraction aims to represent the
signal in the most informative minimal form. TFR analysis
provides distinctive information about the signal. However, the
classification of TFR images with an AI method requires an
advanced hardware system. To overcome this issue, different
approaches have been proposed to represent TFR images
in a simple and reduced dimension form. In our study, we
use GLCM-based attributes [9] calculated from TFR images
and the snapshots of EMGs and IMFs for the classification.
Hence, the second-order histogram-based statistical variables

of GLCM were computed. These variables are defined as
follows:

1) Mean: µ gives the average intensity level. Assume that
the pixel value P(i,j) at the point (i, j) of an image of
size M ×N , GLCM mean value is:

µ =

M−1∑
i=0

N−1∑
j=0

iP(i,j) (5)

2) Variance: σ2 describes the changing intensities around
the GLCM mean.

σ2 =

M−1∑
i=0

N−1∑
j=0

P(i,j)(i− µ)2 (6)

3) Energy: En denotes the energy contained in the GLCM
matrix.

En =

M−1∑
i=0

N−1∑
j=0

P 2
(i,j) (7)

4) Entropy: E is defined as a measure of how much
disorder or randomness present in an image.

E = −
M−1∑
i=0

N−1∑
j=0

P(i,j) log2(P(i,j)) (8)

5) Contrast: C specifies the measurement of the drastic
alteration in gray level among neighboring pixels.

C =

M−1∑
i=0

N−1∑
j=0

P(i,j)(i− j)2 (9)

6) Homogeneity: H represents the likeness in gray level
among neighboring pixels.

H =

M−1∑
i=0

N−1∑
j=0

P(i,j)

1 + (i− j)2
(10)

HHT generates 3D energy distributions, however, to extract
GLCM-based features, those HHS were projected into 2D
images as shown in Fig. 1. The above-explained features are
calculated and combined to construct a feature vector. The
same features were also calculated by using their snapshots of
the EMGs and the selected IMFs extracted by channel-wise
EMD [5], [15].

E. Recognition

In order to exhibit the performance of the used feature
extraction approach, various ML methods were used to clas-
sify seven hand gestures. All classification algorithms were
implemented in MATLAB® (R2021a) Classification Learner
App (CLA), which includes 29 different ML techniques like
SVM, kNN, Random Forest, neural networks (NN), Naı̈ve
Bayes (NB), etc. All ML methods in the CLA were tested
with all feature sets, but only the methods that achieved the
best performance with each set were considered in the study.
PCA method was performed on six extracted features before
the classification step to represent all features with the lowest
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variance. Hence, it provided the reduction of the dimension of
the predictor space. PCA principle was performed explained
in [6]. After obtaining the low-variance data with reduced
dimensions, accuracy, F1-score, and area under the receiver
operating characteristic curve (AUC) values [1], [16] were
calculated to evaluate the performance of the proposed models.

IV. RESULTS AND DISCUSSION

In this study, three different feature extraction approaches
were assessed according to the classification performance in
ML methods. A total of 80850 snapshots were obtained from
EMG signal segments and the first three IMFs, and HHS
separately. Then, the GLCM-based features were computed
by using these images. In the created feature matrix, each
EMG channels have 6 GLCM-based features and there are 24
columns in total. Hence, each feature was represented channel-
wise. After the implementation of dimensionality reduction,
five features are determined by the PCA except for the mean.
5-fold cross-validation technique was used to prevent over-
fitting. All computations were executed with an Intel Core i5-
6200U CPU at 2.30 GHz. The processing time was calculated
as 5.3730 (EMD) + 4.0490 (HHT) + 27.7560 (HHT mesh +
Feature Extraction) = 37.1780 x 4 Channel = 148.7120 ms.

TABLE I
PERFORMANCES OF THE BEST ML MODELS FOR FIVE FEATURES.

Approach Model ACC (%) F1 (%) AUC
EMG Snapshots Random Forest 71.34 70.89 0.78
IMF Snapshots Bagged Trees 82.13 82.74 0.90
HHS Images Cubic SVM 90.87 90.84 ∼ 1

The best performance results for three feature extraction
approaches were given in Table I. The GLCM-based HHS
features achieved the highest ACCy 90.87% with the Cubic
SVM method. The ACCy values of punch, flexion, open hand,
and ulnar deviation were obtained above 92%, whereas other
gestures have ACCy values above 80%. In addition, an error
analysis between gestures was performed using the confusion
matrix in Fig. 3. The misclassification rate is higher between
extension and flexion, radial deviation and ulnar deviation,
extension, and radial deviation, and rest and flexion than in
other combinations. The reason for this may be related to the
similar contraction while performing the different gestures [2].
For instance, when the hand is during the radial deviation, the
hand may sometimes be in a form similar to the extension
due to the anatomical structure. This may have caused a
similar contraction in the muscles. Hence, the distinguishment
between HHS of these gestures may reduce due to this
issue. Similarly, tend of EMG activity of radial and ulnar
deviation was approximated, and muscle activation was similar
in the related channels and amplitude levels. This may have
caused the misclassification of these gestures. Rather than this
misclassification, the overall performance is remarkable. The
average F1-score was calculated above 90.84%. When the
AUC values were examined, the mean AUC was ∼ 1 for the
Cubic SVM. Precision, recall, and specificity of the model
were obtained as 91.14%, 90.87%, and 98.48%, respectively.

Fig. 3. Confusion matrix of Cubic SVM and HHT-based approach.

The EMG and IMF snapshot-based approaches were behind
the HHT-based approach in all tested ML methods. In EMG
signal-based approach, the best validation ACCy was obtained
as 71.34% by Random Forest. The F1-score was 70.89% and
the mean AUC was 0.78. In the IMF-based approach, the best
validation ACCy was obtained as 82.13% by Bagged Trees
with five features. The F1-score was 82.74% and the mean
AUC was 0.90. Here, the feature extraction approach by using
the first-three IMFs increased the 10.79% of the classification
performance compared to the signal-based approach. As we
compare the performance metrics of all the approaches given
in Table I, we notice that the TFR-based approach outperforms
the time-domain EEG signal and IMF-based approaches [19].
Besides, using the GLCM of TFR for feature extraction has
been shown to be an effective approach for hand gesture clas-
sification with sEMG signals. The GLCM-based HHS features
preserve the information acquired from HHT that determines
the intrinsic attributes of short EMG signals, signal frequency
characteristics, and also the changing of FD characteristics as
time [20].

To assess the effectiveness of HHS-based image features on
classification performance, we summarized the performance
results of some recent studies published in the literature in
Table II. The study in [17] applied binary tree (BT) based
SVM method to classify 13 movements. They collected the
data from more channels and fewer subjects compared to the
presented study. Despite using 10-fold cross-validation, they
achieved a 2.67% lower ACC than our best model. Similarly,
[8] obtained 13.57% less ACC with STFT-based methods. The
multi-channel study in [5], which performed 10-fold cross-
validation and classified fewer movements, obtained ∼ 0.17%
less ACC than the HHS-based method with half the number
of subjects. Also, the study in [15] used HHT and Artificial
Neural Network (ANN) for movement recognition but, they
used IMF1-based TD features and yielded the average ACCy
of 86.20%. Similarly, the study in [3], which used the dynamic
time warping (DTW) algorithm and more channels obtained
low ACC compared to this study. Some studies have reported
more successful results on the classification. Devaraj et al.
[4] and Mahmood et al. [16] used TD features in kNN
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TABLE II
COMPARISON TABLE WITH RECENT ML STUDIES.

Study Year Mov. Ch. Part. Model Method Val. ACC (%) F1(%)
[15] 2016 6 2 10 ANN IMF1-based features TTS 86.20 N/A
[17] 2017 13 16 8 BT-SVM TD features 10-fold 88.20 N/A
[6] 2019 9 16 1 GRNN TD and FD features TTS 95.10 N/A
[4] 2020 7 8 32 kNN TD features TTS 93.00 N/A
[8] 2020 6 2 5 kNN STFT-based 10-fold 77.30 N/A
[16] 2021 18 8 3 Fine kNN TD features TTS 98.90 N/A
[18] 2021 3 3 5 TKEO+Subspace kNN TD features TTS 96.67 N/A
[5] 2021 4 8 15 kNN TD features 10-fold 90.70 N/A

This study 2022 7 4 30 Cubic SVM HHT features 5-fold 90.87 90.84
*Mov.: Movement, Ch.: Channel, Part.: Participant, Val.: Validation, TTS: Train-Test Split.

method and achieved a classification ACCy of 93.00% and
98.90% ACCy, respectively. Qi et al. [6] used a combination
of TD and FD features and reached 95.10% ACCy with the
GRNN method. In another study [18], the combination of
Teager–Kaiser energy operator (TKEO) and kNN was used
for EMG data classification with TD features. Some of these
reported studies suffer from some limitations even though
they have reported remarkable results. Some of them used an
unbalanced dataset, others datasets suffer from subject-biased,
and some of them consider only a few gestures. As a result,
we conclude that the proposed method may be an effective
alternative approach for feature extraction from sEMG signals
in hand gesture recognition.

V. CONCLUSION

This study presents an alternative feature extraction ap-
proach based on image features obtained from GLCM of HHS
images, which have not been used in hand gesture recognition
for EMG-based AI systems before, as far as we know. By
comparing the classification accuracy of two different feature
extraction approaches, we demonstrate that the GLCM-based
approach is able to preserve the pattern embedded in the TFR
of the sEMG signal related to the hand gesture. Considering
the reducing computational load in the training and prediction
of the ML models, we conclude that GLCM-based feature
extraction from HHS images has remarkable success in the
classification of hand gestures for myoelectric-based devices.
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