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Abstract— Motor Imagery EEG patterns have been found
to vary across subjects, datasets or even for the same subject
across sessions. This affects considerable the performance of a
BCI system requiring expensive and time-consuming individual
calibration sessions to adapt to new subjects. Our work tackles
the aforementioned problem using the Bayesian multi-task
learning (MTL) framework to share common information
across subjects, sessions and datasets. The proposed frame-
work finds a balance between universal (subject-independent)
classifiers and subject-specific classifiers by using data from
other subjects (even datasets) and combine them to estimate the
classifier parameters for the target subject. This combination
is achieved by selecting appropriate prior and hyper-prior
distributions for the Bayesian MTL framework. Experimental
results in three widely used Motor Imagery datasets shown that
the proposed MTL framework presents superior performance
compared to other state-of-the art methods.

I. INTRODUCTION

A Brain Computer Interface (BCI) using EEG signals
aims to create a communication channel between the human
brain and the computer [1], [2]. A BCI system measures
and translates the brain activity into control signals that can
be used to operate new assistive devices for people with
motor disabilities. Besides medical applications, BCI systems
can also facilitate the communication between humans and
machines/computers through more natural interfaces that
extent beyond mouse and keyboards. An EEG based BCI
system could use various components of the EEG signal to
achieve its goal, (such as SSVEPs, ERPs etc) where special
interest have attracted the systems based on motor imagery
(MI) due to their endogeneneous nature [2]. However, in MI
BCI systems the training effort for both the classifier and the
user is considerable and represents a significant drawback for
its wider adoption [3].

Event related desynchronization (ERD) and synchroniza-
tion (ERS) phenomena, during the imagination of movement,
are useful to MI BCI systems [2]. When a human imagines
a movement of his limbs, we observe contralateral changes
in the brain activities of the motor cortex [2]. But, the
observed EEG signals, are high dimensional, noisy, and
present high degree of correlation, making the recognition of
MI tasks a very difficult procedure. In addition, during an MI

∗ Corresponding author.
1V. P. Oikonomou, Spiros Nikolopoulos and I. Kompatsiaris are with
the Information Technologies Institute, Centre for Research and Technol-
ogy Hellas, CERTH-ITI, 6th km Charilaou-Thermi Road, 57001 Thermi-
Thessaloniki, Greece. {viknmu, nikolopo, ikom}@iti.gr

This work was supported by the NeuroMkt project, co-financed by the
European Regional Development Fund of the EU and Greek National Funds
through the Operational Program Competitiveness, Entrepreneurship and
Innovation, under RESEARCH CREATE INNOVATE (T2EDK-03661).

experiment, the acquired EEG signals are produced by the
motor cortex as well from other spatially neighboring cortical
regions. Thus, it is important to isolate the desired from
the undesired signals, a requirement that has motivated the
use of apatial filters. Among the spatial filtering techniques
reported in MI BCI literature, the one based on Common
Spatial Patterns (CSP) is the most prominent due to its nice
theoretical properties (such as low SNR, dimensionality re-
duction) and its experimental validation on various different
datasets [4], [5]. However, the basic edition of CSP algorithm
is sensitive to noise while overfitting effect can be observed
when we have small training sets. CSP is a subject-specific
algorithm, that it is unable to use information from other
subjects executing the same task with the target subject. To
overcome these problems regularized versions of the CSP
algorithm were proposed in [5], while a conjunction of CSP
algorithm with filter banks (FBCSP) were used in [6].

The design of sophisticated classification schemes with
good generalization ability is an important issue for MI BCI.
Linear Discriminant Analysis (LDA), or Least Squares (LS)
Classifier, presents a well known classifier in BCI community
due to its simplicity and efficiency in discriminating MI tasks
[7]. LDA generally provides good performance under the
hypothesis that the sample covariance matrices are similar
between different classes. However, this might not always
be the case for the classification of MI tasks due to the
potential of severe noise interference. As a consequence,
the overfitting problem is likely to occur, resulting in poor
classification performance. To overcome this issue, classi-
fication algorithms based on regularization techniques have
been employed for the classification of MI tasks. One of
the most prominent representatives of this category are
the Support Vector Machines (SVMs). In conjunction with
CSP features, SVM provides state-of-the-art performance
for MI tasks classification [7]–[9]. However, apart from the
algorithms using regularization techniques, algorithms based
on a Bayesian version of LDA (BLDA or SBL) have been
also proposed [10], [11]. Under various circumstances these
algorithms have shown better performance than LDA or
SVM [10]. Finally, while BLDA variants predict the label of
a test trial using a sparse linear combination of its features,
the Sparse Representation Classification (SRC) scheme [12]–
[14] expresses the test trial as a sparse linear combination of
the training trials, and its label is determined in terms of the
minimum residual norm.

Typical analysis of MI EEG data treats each subject inde-
pendently. In order to utilize data from all subjects, the learn-
ing of CSP spatial filters or classifiers involve three different

1308ISBN: 978-1-6654-6798-8 EUSIPCO 2022



approaches: training models using data from many subjects
(or multi-subjects covariance matrix estimation) [13], [15],
multi-task learning [16] and domain adaptation [15]. Multi-
task learning consists in learning simultaneously multiple
tasks that share some constraints or prior information. For
BCI, each such task is usually to learn a classification model
for a given user, which ensures a similarity between users,
and thus a better learning even for users with few training
data. This has been explored successfully for multi-task
linear classifier learning and multi-task CSP learning [15].
Multi-task linear classifier learning [16]–[19] is a sub-field
of transfer learning where multiple classification tasks are
learned jointly. In our work we propose a new multi-task
linear classifier for MI classification. The novelty of our
work lies on the use of Sparse Bayesian Learning framework
where the shared information between tasks is revealed in
the model hyperparameters (or hyperprior) (second level of
model’s hierarchy), while in [16]–[19] the shared information
is revealed on the prior distribution (first level of hierar-
chy). Experimental results have shown that the proposed
algorithm provides superior classification accuracy compared
to state-of-the-art algorithms. Multitask learning leading to
algorithms that required smaller dataset than classical, supe-
rior performance and smaller training time for the subject
(calibration time) [15], [17].

The remaining sections are organized as follows. First, we
present the proposed multi-task algorithm for MI classifica-
tion. In this section, the Bayesian Linear Model is introduced
for the multi-task learning case. Subsequently, we present the
experiments using MI EEG data from 3 different datasets,
resulting into 25 subjects. Also, we provide a comparison
with well known algorithms. Finally, we conclude this work
with a short discussion and future extensions of our research.

II. METHODOLOGY

The core problem of MI BCI is to discriminate between
the imaginary movement of left vs right hand, which results
into a classification problem of two classes. In addressing
this problem, we typically collect EEG data from L subjects
that perform the same Motor Imagery tasks and for each
subject we extract features’ vectors (most probably CSP-
related features). Let φi1,φ

i
2, · · · ,φ

i
Ni
∈ <M be the set of

CSP feature vectors for i-th subject, where Ni is the number
of CSP feature vectors (training samples). Also, for each
φini

we have knowledge of its label yini
(i.e. whether it

corresponds to a left or a right-hand imaginary movement).
Finally, by collecting all feature vectors into a matrix and all
labels into a vector, we have a pair of (Φi,yi).

We are interested in learning mappings fi(·) that relate
features with labels, i.e. yi = fi(Φi). Also, these map-
pings (or learning tasks) have some common ground since
all subjects perform (or at least are aiming to perform)
the same motor imagery tasks. Furthermore, this common
ground exists, not only in subjects within the same dataset,
but also in subjects from different datasets. Typically, the
finding of mapping fi(·) constitutes the “classifier”, and
the standard approach is to learn one “classifier” for each

subject. However, this approach treats each subject separately
and independently, failing to exploit the common elements
between the various learning tasks.

In our work, we assume that each mapping is linear, and
we adopt the concept of Bayesian linear regression model
[20] to describe the proposed multitask framework [21].
Bayesian models are one of the most important approaches
for multitask learning [21]. Such representations provide the
flexibility to model both the individuality of tasks, as well as
the correlations between tasks. In particular, learning of the
common prior among subjects is part of the training process,
and data from all subjects contribute to learning this common
prior, thus making it possible to transfer information between
subjects. Given the prior, individual models are learned
independently. As a result, the estimation of a regressor
(task) is affected by both its own training data and data
from other subjects (or tasks) related through the common
prior, while the interrelationships among the subjects are
determined automatically through the joint learning.

In our work we assume that the relation between features
and labels is linear, hence each learning task can be described
by the following linear regression model:

yi = Φiwi + ei (1)

where yi a Ni × 1 vector of labels (1 or -1) related to i-th
subject, Φi the Ni ×M matrix containing the features of
i-th subject, wi M × 1 vector of weights (or parameters),
and, ei Ni × 1 vector of noise coming from a zero mean
Gaussian random variable with unknown precision (inverse
variance) a0. We can observe that each of the mapping yields
a corresponding regression task, and performing multiple
such learning tasks has been referred to as multitask learning
[21], which aims at sharing information effectively among
multiple related tasks. In a more abstract view of our problem
we can see that each learning task is a classification problem,
and features from one task affect the classification results of
another task.

The likelihood function for parameters wi and a0 is given
by:

p(yi|wi, a0) = (2πa0)−
Ni
2 exp

{
− a0

2
‖yi−Φiwi‖22

}
(2)

The parameters of a regression task, wi, are assumed to be
drawn from a product of zero-mean Gaussian distributions
that are shared by all tasks. Letting wi,j be the j-th param-
eters for i-th task then we have:

p(wi|a) =

M∏
j=1

N (wi,j |0, a−1
i ) (3)

where the hyperparameters a = {aj}j=1,2,··· ,M are shared
among L subjects, hence, data from all subjects contribute
to learning these hyperparameters. To promote sparsity over
parameters, we place Gamma priors over hyperparameters a
[20], [21]. Also, the same type of prior is placed over noise
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precision a0.

p(a0|α, β) = Ga(a0|α, β)

=
βα

Γ(α)
aα−1
0 exp

{
− βa0

}
(4)

p(a|c, d) =

M∏
j=1

Ga(aj |c, d) (5)

Also, we can observe here, that noise properties are shared
among different subjects (or tasks) (i.e. the noise vectors
in Eq. (1) are drawn from the same Gaussian distribution).
Finally, it must be noted that we have an hierarchical model,
and these types of models are natural to be “dealt” within
the Bayesian framework.

Given hyperparameters a and noise precision a0, we can
apply Bayes theorem to find the posterior distribution over
wi, which is a Gaussian distribution:

p(wi|yi,a, a0) =
p(yi|wi, a0)p(wi)|a)∫
p(yi|wi, a0)p(wi)|a)dwi

= N
(
wi

∣∣∣µi,Σi

)
(6)

where

µi = a0ΣiΦ
T
i yi (7)

Σi =
(
a0Φ

T
i Φi +A

)−1

(8)

where A = (a1, a2, · · · , aM ).
In order to find hyperparameters a and promote sparsity

in parameters, the type-II Maximum Likelihood procedure
is adopted [20], [22], where the objective is to maximize
the marginal likelihood (or its logarithm). Also, a similar
procedure is followed for the noise precision. The marginal
likelihood L(a, a0) is given by:

L(a, a0) =
L∑
i=1

log

∫
p(yi|wi, a0)p(wi|a)dwi

= −1

2

L∑
i=1

(
Ni log(2π) + log |Ci|+ yTi C

−1
i yi

)
(9)

where Ci = a−1
0 I + ΦiAΦT

i

Differentiating L(a, a0) with respect to a and a0 and
setting the results into zero [20]–[22] (after some algebraic
manipulations) we obtain:

a
(new)
j =

L− aj
∑L
i=1 Σi,(j,j)∑L

i=1 µi,j
, j = 1, 2, · · · ,M (10)

a
(new)
0 =

∑
i=1 L

(
Ni −M +

∑M
j=1 ajΣi,(j,j)

)
∑L
i=1 ‖yi −Φiµi‖22

(11)

where µi,j the j-th element of µi and Σi,(j,j) the j-
th diagonal element of covariance matrix Σi. The above
analysis suggests an iterative algorithm that iterates between
Eqs. (7), (8), (10) and (11), until a convergence criterion
is satisfied. Also, the same algorithm can be derived by
adopting the EM framework and treating parameters wi as

hidden variables [20]. Finally, based on the above Bayesian
formulation, we can derive a fast version of the above
algorithm. The fast version provides an elegant treatment
of feature vectors by constructing adaptively the matrix Φi

through three basic operators: addition, deletion and re-
estimation. More information on this subject can be found
in [20], [21].

Finally, when a test sample, φitest, of features is available
for subject i then we decide about its class using the
following rule:

µTi φ
i
test

{
> 0, then class of test sample 1

≤ 0, then class of test sample − 1
(12)

III. RESULTS

In our experiments we have used three MI datasets de-
scribed below.

Graz Dataset B: The first dataset is the BCI competition
IV dataset 2b [23]. Nine subjects participate in this dataset,
and, for each participant EEG data have been collected.
The EEG data of each participant were collected in five
sessions. The first two sessions contain EEG data without
feedback, and, the last three sessions with feedback. Each
session constitutes from six runs, where each run has 20
trials, 10 trials of each class. Furthermore, the brain activity
have been recorded using three electrodes (C3, Cz, and C4)
with a sampling frequency of 250Hz. They were bandpass-
filtered between 0.5 Hz and 100 Hz, and a notch filter at
50 Hz was enabled. Additional information for this dataset
can be found in [23]. This dataset consisted of two classes,
namely the motor imagery of left hand (class 1) and right
hand (class 2).

MKLab MI dataset: The second dataset consists of
EEG signals from 7 participants. These EEG signals were
acquired with the EbNeuro cap (64 channels with a sampling
frequency of 256 Hz). For each participant two sessions were
recorded, In the first session EEG signals were collected
without providing feedback to the participant, while, in the
second session feedback was provided to the participant.
Each session has four runs and in each run 20 trials (10 trials
for each MI task) were collected. In order to acquire the EEG
data the OpenVIBE platform [24] was adopted using the built
in scenario of hand motor imagery based BCI. Finally, this
dataset consists of two classes, the motor imagery of left
hand (class 1) and right hand (class 2), and we have used
the following EEG channels in our analysis: FC5, FC3, FC1,
FC2, FC4, FC6, C5, C3, C1, C2, C4, C6, CP5, CP3, CP1,
CP2, CP4, CP6.

Graz Dataset 2A: BCI Competition IV Dataset2a [23]
comprised 4 classes of MI EEG data from 9 subjects, namely,
left hand, right hand, feet and tongue. Two sessions, one
for training and the other for evaluation, were recorded
from each subject. Each session comprised 288 trials of
data recorded with 22 EEG channels and 3 monopolar
electrooculogram (EOG) channels (with left mastoid serving
as reference). From this dataset we have used only the trials
related to left and right hand, 144 trials from each session.
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Finally, we can observed here that the MI EEG data from
all 25 subjects are divided into two parts, the training part
and the testing part. The training data are used to train
the classifier, while the test data are used to see/check the
performance of the classifier.

For the extraction of EEG features we have used an
approach similar to [6]. More specifically, EEG data from
all available channels have been extracted from 0.5 sec to
2.5 sec after the presentation of the cue and then a band -
pass filter between 8 to 40 Hz has been applied. We have
decomposed the EEG data by applying a filter-bank with 15
bands: 8-12 Hz, 10-14 Hz, 12-16Hz,...,36-40Hz. Then, we
applied the Common Spatial Filters algorithm to extract the
CSP features [5]. By choosing the maximum and minimum
eigenvalues for CSP algorithm, we obtained 30 features for
each trial. Finally, these features are fed into the classifier. In
our algorithm these features are used to construct the feature
matrices Φi.

We compare the proposed approach (Multi-task Linear
Classifier - mLC) with LDA, SBL, extended LDA (eLDA)
and extended SBL (eSBL). The training of LDA and SBL
is performed in each subject separately, while the extended
versions of LDA and SBL use the training data from all
subjects to train a specific classifier for one specific subject.
In our first experiment, we have used the MI EEG data
from all three datasets (a total of 25 subjects), where a
classification task is adopted for each subject. The classifi-
cation accuracy of each method is shown in Table I. We can
observe that the proposed method (mLC) provides the best
performance in most subjects, as well as on the best average
performance. In the second experiment, we have used only
the MKLab dataset, resulting into a 7 tasks problem. The
results are shown in Table II. Again we can see that the
mLC method provides the best performance. Finally, paired
McNemar’s tests have shown that the differences between
the mLC method and the rest of the methods are statistically
significant (p < 0.001 in all cases).

In both experiments we can see that the use of data from
one subject to construct the classifier of another subject
is a useful procedure since the mLC method consistently
presents superior performance than the SBL and the LDA.
The average performance for the MKLab dataset, in the case
of 25 tasks, is (mLC, SBL, LDA, eSBL, eLDA) = (69.70%,
64.76%, 63.57%, 74.40%, 73.69%). Comparing the above
average performance with that of Table II we can see the
increase in performance for mLC, eSBL and eLDA. This
observation indicates that data from one dataset can help
to boost the performance of a classifier on another dataset,
especially in cases where the number of training trials is
small.

In Table III we provide the average classification accuracy
over each dataset. We can see that the mLC method shown
the best performance in terms of EEG datasets. The SBL
and LDA are trained on a subject-by-subject basis so the
inter-subject information is neglected. Moreover when only
a few training samples are available for each subject, the
performance is degraded. Our multitask learning framework

TABLE I
CLASSIFICATION ACCURACY (%) ON THREE DATASETS (25 TASKS)

Sub No Sub ID mLC SBL LDA eSBL eLDA
Graz Dataset 2B

1 B01 73.13 72.19 72.19 63.44 62.81
2 B02 61.79 58.21 58.21 55.71 55.71
3 B03 56.25 55.00 56.56 55.94 54.69
4 B04 96.25 95.94 95.94 96.88 96.88
5 B05 91.25 91.56 91.25 74.69 75.00
6 B06 82.19 81.56 80.63 76.56 75.31
7 B07 73.75 74.06 73.13 71.56 71.56
8 B08 91.56 92.19 91.56 88.75 88.13
9 B09 85.94 85.63 86.25 84.06 84.69

MKLab Dataset
10 Mk01 77.50 82.50 81.25 82.50 81.25
11 Mk02 58.75 53.75 52.50 78.75 77.50
12 Mk03 65.00 61.25 61.25 81.25 80.00
13 Mk04 73.75 60.00 57.50 76.25 75.00
14 Mk05 57.50 55.00 53.75 61.25 61.25
15 Mk06 68.75 57.50 53.75 52.50 52.50
16 Mk07 86.67 83.33 85.00 88.33 88.33

Graz Dataset 2A
17 A01 72.22 70.83 70.14 83.33 84.03
18 A02 49.31 52.78 50.69 44.44 42.36
19 A03 86.11 85.42 85.42 78.47 78.47
20 A04 58.33 56.94 56.25 51.39 50.69
21 A05 73.61 71.53 72.22 54.86 53.47
23 A06 56.25 51.39 52.08 52.78 52.08
24 A07 63.89 64.58 65.28 63.19 62.50
24 A08 84.72 84.03 84.03 81.25 81.94
25 A09 70.83 70.83 70.83 68.06 66.67

Average 72.61 70.72 70.31 70.65 70.11

TABLE II
CLASSIFICATION ACCURACY (%) ON MKLAB DATASET (7 TASKS)

Sub No Sub ID mLC SBL LDA eSBL eLDA
1 Mk01 83.75 82.50 81.25 76.25 76.25
2 Mk02 55.00 53.75 52.50 53.75 50.00
3 Mk03 61.25 61.25 61.25 72.50 72.50
4 Mk04 58.75 60.00 57.50 61.25 62.50
5 Mk05 53.75 55.00 53.75 47.50 48.75
6 Mk06 58.75 57.50 53.75 51.25 51.25
7 Mk07 83.33 83.33 85.00 78.33 76.67

Average 64.94 64.76 63.57 62.98 62.56

is able to overcome the above problems. Also, the construc-
tion of a universal classifier (eSBL and eLDA) doesn’t seem
to be the most appropriate choice since it neglects to take
into account the subject’s specific features. In contrast, our
framework shares information between subjects and datasets
in order to construct the classifier for each subject. Overall,
our framework seeks to find balance between universal and
subject-specific classifiers.

IV. CONCLUSIONS

In this work we have proposed a Bayesian multi-task
learning framework to share common information across
subjects, sessions and datasets. The novelty of our work lies
in the use of Sparse Bayesian Learning framework where the
shared information between tasks (or subjects) is revealed in
the model hyperparameters. Experimental results have shown
that our framework succeeds in finding a balance between
universal classifiers and subject-specific classifiers, and it
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TABLE III
AVERAGE CLASSIFICATION ACCURACY (%) WITH RESPECT TO THE

DATASET (25 TASKS)

Dataset mLC SBL LDA eSBL eLDA
Graz 2B 79.12 78.48 78.41 74.18 73.86
MKLab 69.70 64.76 63.57 74.40 73.69
Graz 2A 68.36 67.59 67.44 64.20 63.58

presents better overall performance than other competing
methods. In the future, we intend to examine various modi-
fications of our approach with respect to the learning of CSP
filters and to the prior distributions. Also, we intend to adjust
our framework for allowing its application in BCI systems
that are based on Steady State Visual Evoked Potentials.
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