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Abstract—Due to quasi-periodic sampling of vocal tract system,
spectrum formed by high pitch-source harmonics results in
extremely poor spectral resolution for commonly used spectral
features, such as Mel Frequency Cepstral Coefficients (MFCC).
Therefore, classifying normal vs. pathological infant cry became
technologically challenging signal processing problem. In that
context, this study investigates the effectiveness of the spec-
tral representations over cepstral representations for infant cry
analysis. Furthermore, we show the spectrographic analysis for
various spectral representations, such as Short-Time Fourier
Transform (STFT), Mel Filterbank (MelFB) coefficients, Linear
Filterbank (LinFB) coefficients, and proposed subband Teager
Energies (subband-TE). Experiments are performed on standard
Baby Chilanto dataset with Gaussian Mixture Model (GMM)
and Support Vector Machine (SVM) as classifiers. It is observed
that spectral representations performs slightly better over the
cepstral representations. Moreover, subband-TE representations
with GMM classifier achieves 99.47% classification accuracy for
normal vs. pathology cry and outperforms other architectures.
This is due to the capability of TEO to accurately estimate the
energies, especially in low frequency regions which consists of
fundamental frequency (F0) and its harmonics.

Index Terms—Infant cry analysis and classification, patholog-
ical cry, Teager Energy Operator.

I. INTRODUCTION

Crying is an infant’s only mode of communication [1].
Millions of infants die within a few months of birth due
to diseases, malnutrition, and vaccine-preventable diseases
[2]. For this purpose, fingerprint and cry-based identification
systems for neonates are being developed for infants [2],
[3]. The most prevalent causes of infant’s death are perinatal
asphyxia, asthma, and Sudden Infant Death Syndrome (SIDS)
[4], [5]. An arterial blood sample is necessary for numerous
measures, including oxygen saturation, PH, and electrolyte, in
order to clinically identify these disorders. Hence, detecting
pathology takes longer time in developing nations and is
costly, which results in death of infant. Asphyxia is one of
those diseases that can be diagnosed by visual symptoms,
like pale and bluish limbs. Nevertheless, by then, the newborn
would have suffered significant neurological damage [5], [6].
Similarly, for the deaf infant, the acoustical features depend
on the type of hearing loss, rehabilitation period, as well as
the age at which the pathology was detected [7]. As a result,
the demand for developing a cry diagnostic assistive tool to
aid doctors in recognizing early indicators of such illnesses

is growing. In the analysis and classification of infant cries,
physiologists, neurologists, paediatricians, engineers, linguists,
and psychologists are all involved. This paper presents a
signal processing-based technique for classifying normal vs.
pathological infant cries.

The initial work in this area started in early 1960s [8], where
spectrogram was used. Various spectrographic cry modes,
such as vibration, dysphonation, inhalation, hyperphonation,
etc. were analysed in the healthy baby cries [9]. However,
this study was extended for pathological cries in [10], where
different cry modes were also found to be correlated in
pathological cries. In this study, due to quasi-periodic sampling
of vocal tract system, narrowband spectrogram barely shows
the formant structures and hence, F0 and its harmonics serve
as the key features in this application as opposed to the other
applications in speech signal processing.

Apart from the prosodic features, such as pitch F0 [11],
the state-of-the-art cepstral features, such as Mel Frequency
Cepstral Coefficients (MFCC) with Gaussian Mixture Model
(GMM) are also recently used for healthy vs. pathological
infant cry classification [12], [13]. However, this paper investi-
gates the effect of spectral feature for infant cry classification.
Furthermore, the capability of the Teager Energy Operator
(TEO) to accurately estimate the energies of the signal is
exploited for the assigned task [14]. Teager Energy Cepstral
Coefficients (TECC)-based on TEO are used originally for
automatic speech recognition applications [15], [16]. Many
studies reveal that the feature representation of the speech
signal developed using TEO outperforms for SSD task [17],
[18].

For this application, we proposed the subband Teager En-
ergies (Subband-TE) for infant cry analysis. Subband-TE is
equivalent to the spectral representation, as opposed to the
cepstral. The reasoning behind the suitability of the spectral
representations over cepstral for infant cry analysis is dis-
cussed in Section II. Furthermore, Section III presents the
details of the proposed subband-TE and TECC feature sets.
The experimental setup and results are discussed in Section
IV and Section V, respectively. Finally, Section VI presents
the summary and future scope of this work.
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Fig. 1: Functional block diagram of the proposed Subband TEO representation and TECC feature set. (SF: Subband filtered
signal, TE: Teager Energies, AE: Averaged Energies over frames, TA: Temporal Averaging). After [15], [19].

II. SPECTRAL vs. CEPSTRAL ANALYSIS FOR INFANTS CRY

In speech signal processing applications, cepstral features
are generally preferred over spectral features. Using linear
filter theory, the speech signal x(n) is modelled as the convo-
lution of glottal airflow (s(n)) with vocal tract system (h(n)),
i.e., x(n) = s(n) ∗ h(n), where ’∗’ represents the convo-
lution operation. In evaluation of the logarithmic cepstrum,
convolutionally-combined vector space, x(n) = s(n) ∗ h(n),
is mapped to the additively combined vector space, x̂(n) =
ŝ(n) + ĥ(n), such that the contribution of glottal airflow
s(n), and impulse response of vocal tract system, h(n) can
be distinctly observed [20], [21]. This transformation takes
place in such a way that the duration of the pulse-train, ŝ(n)
remains the same as that of s(n), however, ĥ(n) should get
compressed (in quefrency-domain) than the h(n) [20]. Here,
x̂(n), ŝ(n), and ĥ(n) are referred to as logarithmic cepstrum
of their corresponding time-domain signals, x(n), s(n), and
h(n), respectively. The logarithmic cepstrum is estimated as
the inverse Fourier transform of the logarithm of the Fourier
transform of the given signal x(n), i.e.,

x̂(n) = F−1(log(F(x(n)))), (1)

where F(·) represents the Fourier transform. Because of the
transformation given in eq. (1), convolutional vector space is
transformed to additive vector space [22].

The source signal s(n) is represented by the fundamental
frequency (F0), which varies w.r.t. age of the individual. In
infants, the mass of the vocal folds is much lesser than that
of an adult male. Hence, the frequency of the vibrations (and
hence, F0 and its harmonics) of the vocal folds in infants is
much larger than that of adult male. The F0 in infants and
adult male is 250-400 Hz and 60-100 Hz, respectively. Due
to relative differences in mass (and related inertia) of vocal
tract system and vocal fold, frequency of oscillations of vocal
folds is much greater than that of vocal tract system and hence,
in quefrency domain, ŝ(n) and ĥ(n) are well separable in adult
males, whereas for infants, it is difficult to separate. In various
speech signal processing applications, we need to extract the
vocal tract system information to extract feature set. Hence,
cepstral representations are significant in those applications.
In this work, the F0 and its harmonics are being the cues
for the classification of normal vs. pathology cry signals,
spectral features are supposed to produce the desirable feature
representation. This theoretical hypotheses is validated using

the experiments, where spectral representations are shown to
give better performance.

III. SUBBAND TEAGER ENERGY REPRESENTATIONS

According to conventional signal processing literature, en-
ergy of the speech signal x(t) is estimated as L2(R)-norm
of the signal, i.e., square operation over the entire signal
under analysis [23]. This approach of estimating the energy is
based on linear filtering theory, which could model the linear
components of the speech signal. However, speech production
mechanism consists of the non-linearities and hence, the
speech signal energies could not be estimated accurately using
linear filter theory [24]. To alleviate this issue, TEO was
introduced in [14]. It is a non-linear differential operator which
could capture the non-linear aspect of the speech production
mechanism and also the properties of airflow pattern in the
vocal tract system [21], [23]. Energy of the given speech signal
x(t) having amplitude, A and monotone frequency, ωm can be
estimated using TEO as:

Ψ[x(t)] = [ẋ(t)]2 − x(t)ẍ(t) = A2ω2
m, (2)

where ẋ and ẍ represents the first and second-order derivative
of the signal x(t). The expression of the TEO in eq. (2) is
derived from the solution of simple harmonic motion (SHM),
which possess single frequency component. By approximating
the derivative operation in continuous-time with backward
difference in discrete-time, we obtain the TEO for discrete-
time signal x(n) having amplitude A and monotone angular
frequency Ωm as follows [14]:

Ψ[x(n)] = x2(n)− x(n− 1)x(n+ 1) ≈ A2Ω2
m. (3)

TEO is derived to estimate the energy for monotone signal.
However, speech signal consists of the frequency range vary-
ing from baseband to Nyquist frequencies. Hence, to obtain
the monotone approximation of the signal, the speech signal
is allowed to pass through the filterbank, which consists of
several subband filters with appropriate center frequency and
bandwidth. The subband filtered signals are narrowband sig-
nals which are supposed to approximate the monotone signals
and hence, TEO can be applied on these subband filtered
signals. In this work, Gabor filterbank with linearly-spaced
subbandd filters, is utilized for subband filtering. TEO is ap-
plied on each subband filtered signal to accurately estimate the
energy. Furthermore, these narrowband energies are segmented
into the frames of 20 ms duration with overlapping of 10
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ms. Then, the temporal average for each frame is estimated
to produce N -dimensional (D) subband Teager energy repre-
sentations (subband-TE). Discrete Cosine Transform (DCT) is
performed on subband Teager energy representations to obtain
the TECC. The functional block diagram representation of the
proposed subband-TE and TECC feature set is shown in Fig.
1. In this study, we analyzed the relative performance of the
subband-TE vs. TECC feature set.

IV. EXPERIMENTAL SETUP

A. Dataset Used

In this study, we utilized the standard Baby Chilanto
database. It was designed using recordings made by doctors
and is the property of Mexico’s NIAOE-CONACYT [25]. Each
cry signal was segmented into one second duration and then
grouped into 5 groups. For binary classification of healthy vs.
pathological cries, two groups were constructed, where healthy
cry signals include normal, pain, and hunger cries totalling in
1049 cry samples. Pathological cry signals include asphyxia
and deaf cries totalling in 1219 cry samples. The statistics of
the dataset is shown in the Table I. As the number cry signals
are less in number, experiments are performed using 10-fold
cross-validation.

TABLE I: Statistics of the Baby Chilanto dataset. After [25].

Class Category # Samples

Healthy
Normal 507
Hunger 350

Pain 192

Pathology Asphyxia 340
Deaf 879

B. Feature Sets and Classifier Used

In this study, the performance of the proposed subband-TE
and TECC feature sets is evaluated against the other state-
of-the-art feature sets. The performance of the TECC feature
set is compared against the other state-of-the-art cepstral fea-
tures, namely, Mel Frequency Cepstral Coefficients (MFCC),
Linear Frequency Cepstral Coefficients (LFCC), and Short-
Time Cepstral Coefficients (STCC). Furthermore, subband-TE
being a spectral representation, its performance is compared
against the Mel Filterbank coefficients (MelFB), Linear Filter-
bank Coefficients (LinFB), and Short-Time Fourier Transform
(STFT). The TECC, MFCC, LFCC, and STCC feature sets
are of 120-D, 42-D, 120-D, and 120-D, respectively, and
these feature sets include static, ∆, and ∆∆ features. MelFBs
and LinFBs are extracted by applying Mel filterbank and
linear filterbank on STFT, respectively, using 40 subband
filters in the corresponding filterbank. Furthermore, for fair
comparison, subband-TE features also uses 40 subband filters.
Thus, subband-TE, MelFB, and LinFB features are of 40-D,
and STFT is represented using 257-D.

As this study focuses on handcrafted feature sets for in-
fant cry analysis, we utilized the conventional state-of-the-art
classifiers, namely, Gaussian Mixture Model (GMM)-based
classifier and Support Vector Machine (SVM) [26]. GMM
is utilized to learn the distribution of each class using a

mixture of the Gaussian probability density functions (pdfs)
represented by the mean, covariance, and weights. Then, test
utterances are presented to the GMM of each class to finally
estimate the log-likelihood ratio, which is used to predict the
class of the test sample [26]. SVM is a non-probabilistic binary
linear classifier which gives an optimal hyperplane for given
labeled training data, and categorizes new examples [27].

Performance of the various systems are evaluated using
two evaluation metrics, namely, % Equal Error Rate and %
classification accuracy. The LLR scores obtained from CM
system is used to compute EER. The EER is derived from
detection error trade-off (DET) curve, which represents the
performance on detection tasks that involve the trade-off of
error types, namely, false alarm rate and miss rate [28]. The
EER refers to the threshold at which both the error rates
are equal. % classification accuracy is used to measure the
number of samples classified correctly for a given class in
%. Furthermore, DET curves are also plotted for various
classification system.

V. EXPERIMENTAL RESULTS

A. Spectrographic Analysis

In Fig. 2, Panel-I and Panel-II represents the spectrographic
analysis for randomly sampled normal and asphyxia cry sig-
nals, respectively. Fig. 2(a), Fig. 2(b), and Fig. 2(c) represents
the STFT, MelFB, and subband-TE representations, respec-
tively. It can be observed from Fig. 2(a) that there is difference
in the pattern formed by F0 and its harmonics for normal
vs. asphyxia cry signals. These differences in the pattern is
also visible for MelFB representation as shown in Fig. 2(b).
However, these differences are more vivid for subband-TE
representations as shown in Fig. 2(c). It might be because
of the fact that TEO can accurately estimate the energy of the
signal considering non-linear aspects of the speech production
mechanism and also properties of airflow pattern in the vocal
tract system [21], [23]. Furthermore, the results obtained using
10-fold cross-validation also validates that the proposed TECC
and subband-TE representations performs better over the other
feature sets in this study.

TABLE II: Results in (% classification accuracy and % EER)
using various cepstral feature sets using GMM and SVM as
classifiers.

MFCC LFCC STCC TECC

GMM Acc. 98.55 98.28 98.99 99.12
EER 1.23 0.50 0.26 0.61

SVM Acc. 88.11 80.18 87.84 86.56
EER 12.72 18.78 13.84 12.57

B. Results

Cepstral representations are being common in speech signal
processing applications, we performed the experiments using
four cepstral feature sets, namely, MFCC, LFCC, STCC,
and TECC. As the size of the dataset is relatively small,
experiments are performed using 10-fold cross-validation. The
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Fig. 2: Panel-I and Panel-II represents the spectrographic
analysis for normal vs. asphyxia cry samples, respectively. Fig.
2(a), Fig. 2(b), and Fig. 2(c) represents the STFT, MelFB, and
subband-TE representations, respectively.

TABLE III: Results in (% classification accuracy and % EER)
for various spectral feature sets using GMM and SVM as
classifiers.

MelFB LinFB STFT subband-TE

GMM Acc. 98.99 98.77 98.59 99.47
EER 1.5 0.70 1.6 0.3678

SVM Acc. 88.15 87.80 78.06 90.35
EER 10.49 10.40 19.41 8.23

dataset consists of the healthy and pathology class cry sam-
ples recorded with sampling rate of 22 kHz and 11 kHz,
respectively. The experiments are performed using features
extracted from the cry samples resampled to 16 kHz and
results are reported in Table II. It can be observed that the
proposed TECC feature set outperforms the other feature
sets for both SVM and GMM classifiers. We utilized 512
Gaussian mixtures in the GMMs. Furthermore, experiments
are extended with spectral feature sets, namely, subband-TE,
MelFB, LinFB, and STFT. We utilized the spectral feature
representations as it has low-dimensional representations than
the cepstral features. It can be observed from Table III that
the proposed subband-TE feature set outperforms the other
feature sets for both SVM and GMM classifiers. Further-
more, all the spectral representations performs equally well
as compared to their corresponding cepstral representations.
However, subband-TE performs slightly better than its cepsral
counterpart, i.e., TECC. Hence, it would be better to choose
the spectral representations for this application.

Furthermore, DET curves are plotted for various spectral
features as shown in Fig. 3. It can be observed that the
proposed subband-TE representation performs better than all
the other spectral representations for both the classifiers. The
experiments are extended for varying number of Gaussian
mixtures in GMM and results are obtained as shown in Table
IV. It can be observed that the performance is improving as we
increase the number of Gaussian mixtures in GMM from 64 to
512 and then it saturates, possibly due to the fact that a large
number of 1024 mixtures is not required to model relatively

Fig. 3: DET plots for various feature sets using GMM and
SVM as classifiers.

lesser duration of infant cry samples. Hence, we utilized 512
Gaussian mixtures in GMM for the remaining experiments.
Furthermore, performance is also validated w.r.t. number of
subband filters in the Gabor filterbank to extract the sunband-
TE representations, and the results are reported in Table V.
Fundamentally, TEO is developed for monocomponent signal.
However, the speech signal occupies wide frequency range. To
analyze the speech signal using TEO, we need to approximate
it to monocomponent signal, and it is achieved using subband
filtering. If we increase the number of subband filters in
the filterbank then we obtain the better approximation to
monocomponent signal. Hence, we validated the performance
w.r.t. number of subband filters. It can be observed that the
performance is almost constant w.r.t. number of subband filters
in the filterbank and hence, we chose 40 number of filters in
the filterbank as an optimal choice.

TABLE IV: Results (in % classification accuracy) w.r.t. num-
ber of mixtures

Mixtures 64 128 256 512 1024
Accuracy 98.72 98.94 99.16 99.47 99.47

TABLE V: Results in % classification accuracy (Acc) for
various number of filters using GMM.

Filters Acc. Filters Acc. Filters Acc. Filters Acc.
40 99.47 60 99.21 80 99.47 100 99.38

120 99.47 140 99.38 160 99.38 180 99.47

VI. SUMMARY AND CONCLUSIONS

In this study, we investigated the suitability of the spectral
representations over cepstrals for infant cry analysis and classi-
fication. Because of the high pitch-source harmonics, spectral
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representations are more suitable for the normal vs. patho-
logical infant cry classification. This theoretical assumption
is validated using the experimental results. Furthermore, we
exploited the capability of the TEO for accurately estimating
the energies (especially approximated for the lower frequency
regions). TEO being capable of better approximating the
energies in low frequency regions, it is the suitable choice to
extract information for pitch-source harmonics of infant cry,
which is present at low as well as high frequency regions of
the spectrogram.
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