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Abstract— This paper presents a dynamic transport model of a 

gaseous compound such as carbon dioxide based on the diffusion-

convection through a three layered media composed of: a liquid 

medium (blood), a membrane (skin), a gaseous medium (air). The 

objective is to estimate the signal defined by the time variations in 

the concentration of the gaseous compound dissolved in the liquid 

medium based solely on the measurement signal defined by the 

time variations of the concentration of the gaseous compound in 

the gaseous medium. This dynamic model makes it possible to 

formulate the direct transport model in the form of a Markovian 

model with hidden states in order to generate synthetic data. We 

propose to implement a Kalman filter to calculate from the noisy 

observed variables, the hidden variables of the model, and in 

particular the concentration of the gaseous compound in the liquid 

medium. The challenge is to model the temporal evolution of a 

concentration profile as a function of time and depth taking into 

account the heterogeneity of the diffusion coefficients and the 

partition coefficients associated with the three media considered. 

The objective of this time recursive processing is to design an 

algorithm, which can be carried out on an embedded processor, 

taking into account the constraints of limited computing capacity. 

The application we are dealing with concerns the transcutaneous 

measurement of blood carbon dioxide in the forearm using an 

autonomous wristband-type worn device, in particular for 

monitoring respiratory diseases at home[1],[2]. 

Keywords— inverse convection-diffusion problems, space-state 

models, Kalman filter, desorption phenomena, skin transport, carbon 

dioxide gas, wireless wristband 

I. INTRODUCTION 

One of the main functions of the skin is to protect the body 
against the action of various external agents. The resistance 
against mechanical or chemical factors is given by the keratin 
cells that form the stratum corneum on the surface of the skin. 
This layer represents the first barrier and it opposes the 
greatest resistance to the absorption or desorption of solutes 
through the skin. 

The transport process through the skin has been studied 
extensively due to the possibility of drug administration using 
transdermal patches. The phenomenon of penetration of a 
solute through the epidermis and the dermis is often studied 
for the local and systemic administration of drugs from the 
patch through the epidermis [3],[4],[5]. Mathematical models 
have been developed in order to adjust the proper local and 
systemic administration of drugs. One mathematical approach 
used is the resolution of the transport equation in the Laplace 
domain that provides a steady-state solution for the transport 
equation. One of the drawbacks of this method is the difficulty 

to go from the expression of the solution in the Laplace 
domain back to the time domain. 

In this paper, we will model the process of convection-
diffusion of gas molecules from the blood medium, through 
the skin tissues to the surface with the ambient air. The 
changes that occur in the blood, and, consequently, the 
concentrations measured at the surface of the skin fluctuate 
over time as they depend on the correct or insufficient 
ventilation of the individual, his pathology, possible chronic 
diseases, etc. The gas transport is described by a system of 
differential equations. To get the numerical solution to this 
system of differential transport equations, we introduce a 
discretisation based on a centred finite difference scheme. 
These schemes are known to have higher flexibility regarding 
the boundary conditions than finite or boundary element 
methods[5]. In this work, we especially focus on the interface 
continuity equations and the boundary conditions in a one-
dimensional simplification. The dynamic model is then 
converted into a discrete state-space model, which allows the 
processing of noisy observations using its associated Kalman 
filter. Moreover, this will allow to get a recursive 
implementation on an embedded microcontroller and to 
estimate unknown concentrations in close to real time, as soon 
as new data is available. 

In the second section, we will set-up the system of 
differential equations related to gas desorption with the 
associated boundary and interface conditions. In the third 
section, we will establish the link between this system of 
continuous differential equations and their implementation in 
a discrete scheme. We will consider equally spaced points on 
a spatial grid for each compartment. Differences between of 
the explicit and implicit solution for a time integration schema 
will be presented to take into account the conditions of 
inversion stability. In the fourth section, we will present the 
results of the inference of the hidden variables using a Kalman 
filter. In order to reduce the memory requirement, we will 
study how to minimize the number of points necessary for the 
spatial discretisation path with respect to borders condition 
and Péclet number. In the fifth section, we will formulate 
some conclusions and give perspectives for the continuation 
of this work. 

II. TRANSPORT MODEL 

We will use the following conventions for our notations: 

continuous scalar fields, vector fields, and constants will be 

denoted by lightface characters. The space-time variable will 
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appear as arguments between parentheses. Discrete 

representations will be given using arguments between 

brackets; these quantities will appear in boldface lowercase 

characters when regrouped into a vector or boldface 

uppercase characters when regrouped into a matrix (linear 

operator). 

A. Transport equation 

Desorption phenomenon for gas compounds involves two 
physical transport mechanisms: convection and diffusion. The 
diffusion process is related to the Brownian motion of the 
particles and is characterized by a diffusion constant, which 
describes how far the substance travels on a mean free path 
through the medium per unit time. Convection process models 
the mean velocity of the particles as a consequence of 
transport by another medium (convection). Table I resumes 
the principal parameters and their units. 

Table I. Definition of physical parameters used in this manuscript 

Abbreviation Parameter SI Units  

𝐷 diffusion coefficient 𝑚2/𝑠 

𝑢 flow velocity 𝑚/𝑠 

𝐻 Henry’s partition constant 𝑎𝑑𝑖𝑚 

𝐶 concentration 𝑚𝑜𝑙/𝑚3 

𝑃 pressure 𝑚𝑚𝐻𝑔 

The diffusion process is characteristic for the transport of 
molecules and it is present in all three media. The diffusion 
process is the one that has the greatest impact on transdermal 
transport, the mean velocity of molecules at this level being 
zero. The convection process within the liquid phase is due to 
the blood flow that provides and removes concentration in the 
areas of exchange. In the gaseous phase, the convection is 
produced by an air flow induced by a mechanical ventilation 
in order to prevent the accumulation of carbon dioxide at the 
surface of the skin and to speed-up the time-response of the 
device. 

 

Fig.1. Direct and inverse transport model. The associated parameters for 
modelling transport phenomena through the three compartments are 

specified in Table I and their values in Table II. 

Table II. Values of the physical parameters 

 Blood Skin Air 

𝐷 2.2 ∙ 10−5𝑐𝑚2/𝑠 1.0∙ 10−7𝑐𝑚2/𝑠 1.8 ∙ 10−1𝑐𝑚2/𝑠 

𝐻 5. 4 ∙ 10−1
 1.6 1.0 

𝑢 1.1 ∙ 10−1𝑐𝑚/𝑠 0.0 cm/s 1.0 ∙ 10−1𝑐𝑚/𝑠 

∆𝑧 3. 0 ∙ 10−1
 𝑐𝑚 1.6 ∙ 10−3 𝑐𝑚 3. 0 ∙ 10−1

 𝑐𝑚 

∆𝑦 2.0 𝑐𝑚 2.0 𝑐𝑚 2.0 𝑐𝑚 

∆𝑥 5.0 𝑐𝑚 5.0 𝑐𝑚 5.0 𝑐𝑚 

We consider the following convection-diffusion equation 
based on the mass conservation principle:  

𝜕𝐶(𝑧,𝑡)

𝜕𝑡
= −

∂

𝜕𝑧
[𝑢(𝑧) ∙ 𝐶(𝑧, 𝑡)] +  

∂

𝜕𝑧
[𝐷(𝑧) ∙

∂

𝜕𝑧
𝐶(𝑧, 𝑡)](1) 

Where 𝐶(𝑧, 𝑡) is the solute concentration at position 𝑧 and 
time 𝑡; 𝑢(𝑧) the velocity vector field of the solute; and 𝐷(𝑧) 
the scalar diffusion field.  

Within the interior of each compartment, we assume the 
parameters 𝑢 and 𝐷 to be constant. Thus we derive from (1) 
the one-dimensional transport equation within the interior of 
each of the compartments of Fig. 1: 

𝜕𝐶(𝑧,𝑡)

𝜕𝑡
= −𝑢

𝜕𝐶(𝑧,𝑡)

𝜕𝑧
+ 𝐷

𝜕2𝐶(𝑧,𝑡)

𝜕𝑧2   (2) 

B. Boundary conditions 

To solve the transport equation Robin and Neumann 
boundary condition are imposed at the lower and upper 
boundary of the system as follows:  

 Lower limit of the system: zero flux 

𝑢𝐶(𝑧, 𝑡) − 𝐷
𝜕𝐶(𝑧,𝑡)

𝜕𝑧
|

𝑧=𝑧0

= 0  (3) 

 For the transport direct model, the input 𝐶𝑂2concentration 
value 𝐶𝐶𝑂2

𝑖𝑛 𝑏𝑙𝑜𝑜𝑑 = 1.09 𝑚𝑜𝑙/𝑚3  is the average value (𝜇 ) of the 

concentration, which corresponds to a pressure 𝑃𝐶𝑂2

𝑖𝑛 𝑏𝑙𝑜𝑜𝑑 =

40 𝑚𝑚𝐻𝑔  in the blood. We consider here, there is neither 
convection, nor diffusion flux under 𝑧 = 𝑧0.  

 Upper limit of the system: interfacing with the outer 
world. The derivative on the upper boundary of the 
system is set to be zero 

𝜕

𝜕𝑧
𝐶(𝑧, 𝑡)|𝑧=𝑧3

= 0 (4) 

C. Interface conditions 

The transport equation in gas dynamics corresponds to the 
conservation of mass between different media within the two 
boundaries of the physical system. At the two interfaces, we 
impose the condition of flow continuity since the quantity of 
𝐶𝑂2 which leaves from one medium is entering in the next 
one. The mass transfer occurs gradually as the gas compound 
diffuses. The subscripts minus and plus refer to the parameter 
values before and after the interface, respectively. Two 
interfaces are identified in the model, one at 𝑧 = 𝑧1  and 
another at 𝑧 = 𝑧2. 

lim
𝛿𝑧→0+

𝑢−𝐶−(𝑧 − 𝛿𝑧−, 𝑡) − 𝐷−
𝜕𝐶−(𝑧−𝛿𝑧−,𝑡)

𝜕𝑧
=

lim
𝛿𝑧→0+

𝑢+𝐶+(𝑧 + 𝛿𝑧+, 𝑡) − 𝐷+
𝜕𝐶+(𝑧+𝛿𝑧+,𝑡)

𝜕𝑧
 (5) 

The subscript “−” designs the medium before the interface 
and the subscript “+” represents the medium after the 
interface. The diffusion process occurs in the direction of the 
pressure gradient, from the compartment with high 
concentration towards the one with low concentration of 
molecules. In this simplified version of the model, we assume 
there are neither sources nor sinks. Thus, there is a 
conservation of the total carbon dioxide mass. 

The partial pressure 𝑃  and the concentration 𝐶  of a gas 
compound   in a liquid medium are linked by Ostwald’s 
solubility coefficient 𝛽 = 0. 0275 𝑚𝑜𝑙 𝑚−3𝑚𝑚𝐻𝑔−1  

𝐶 = 𝛽𝑃  (6) 

The adimensional Henry partition coefficient 𝐻𝑖 of 𝐶𝑂2 is 
defined by the ratio of the solubility coefficient 𝛽𝐶𝑂2

𝑖  of 𝐶𝑂2 in 
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the media 𝑖 with respect to the solubility 𝛽𝐶𝑂2

𝑎𝑖𝑟  of 𝐶𝑂2 in the 

air. 

𝐻𝑖 =
𝛽𝐶𝑂2

𝑖

𝛽𝐶𝑂2
𝑎𝑖𝑟   (7) 

Thus, we formulate the second interface condition, which 
ensures pressure continuity, as: 

 lim
𝛿𝑧→0+

𝐶−(𝑧−𝛿𝑧,𝑡)

𝐻−
= lim

𝛿𝑧→0+

𝐶+(𝑧+𝛿𝑧,𝑡)

𝐻+
≝ 𝐶−|+  (8) 

where 𝐶−|+ defines the equivalent concentration in the air at 

the interface. 

III. NUMERICAL APPROACH 

For a homogeneous medium with diffusion constant D and 
stationary convection u over a segment 𝑧 ∈ [0; 𝐿], we rewrite 

the diffusion equation with dimensionless parameters 𝜉 =
𝑧

𝐿
 

and the Péclet number defined as 𝑃𝑒 ≝
𝑢𝐿

𝐷
. For the blood 

media 𝑃𝑒 𝑏𝑙𝑜𝑜𝑑 ≫ 1 reveals that convection is the principal 
transport mechanism compared to diffusion while in the 
ambient air, 𝑃𝑒 𝑎𝑖𝑟 < 1 , diffusion dominates convection.  

In discretised time and space (uniform sampling), the 
transport equation within a homogeneous compartment and 
without source or sink can be written (after some 
manipulations and invoking the mean-value theorem) for 
some  𝜏 ∈ [𝑡, 𝑡 + 𝛿𝑡] as  

𝐶[𝑧, 𝑡 + 𝛿𝑡] − 𝐶[𝑧, 𝑡] = 𝐷𝛿 {(1 +
𝑃𝑒

𝛿

2
) 𝐶[𝑧 − 𝛿𝑧, 𝜏] −

2𝐶[𝑧, 𝜏] + (1 −
𝑃𝑒

𝛿

2
) 𝐶[𝑧 + 𝛿𝑧, 𝜏]}  (9) 

where we wrote 𝐷𝛿 ≝
𝐷 𝛿𝑡

(𝛿𝑧)2 and 𝑃𝑒
𝛿 ≝ 𝑃𝑒

𝛿𝑧

𝐿
=

𝑢 𝛿𝑧

𝐷
.  

 The derivatives in the boundary conditions are 
implemented by extending the spatial grid through reflection 
about 𝑧 = 𝑧0  and 𝑧 = 𝑧3  and solving for the unknown 
concentrations using the discretised differential equations 
given by the boundary conditions of section II.B. At the 
interfaces, one-sided differences are taken and slack variables 
𝐶𝑏𝑙𝑜𝑜𝑑|𝑠𝑘𝑖𝑛  and 𝐶𝑠𝑘𝑖𝑛|𝑐𝑜𝑙  are introduced according to (8). 

These two variables are then eliminated from the system 
through substitution, allowing to define the convection-
diffusion continuity equations across the interface 
boundaries. The discretised spatial differential operators are 
then gathered in a matrix 𝑭 acting on the concentration vector 
𝒄[𝜏]. 

The link with the temporal finite differences is done by 
using 𝜏 = 𝑡 in (9) for an explicit Euler scheme, or 𝜏 = 𝑡 + 𝛿𝑡 
for the implicit scheme, yielding the matrix expression:  

𝒄[𝑡 + 𝛿𝑡] − 𝒄[𝑡] = 𝛿𝑡 𝑭𝒄[𝜏]  (10) 

with 𝛿𝑡 the time between two successive sample points 
(sample period).𝒄[𝑡] is the state vector  

[𝑐(1, 𝑡), … , 𝑐(𝑖, 𝑡), … , 𝑐(𝑁, 𝑡)] (11) 

where 𝑁  is the total number of points considered to 
discretize the continuous spatial space and  𝑐(𝑖, 𝑡)  is the 
concentration corresponding to the point 𝑖 on the spatial mesh 
at time 𝑡. An important aspect when choosing one of Euler’s 
integration schemes is inspecting the stability condition for the 
discrete-time model.  

|1 + λ𝑭 ∙ 𝛿𝑡 | ≤ 1 ⇔ −2 ≤ λ𝑭 ∙ 𝛿𝑡 ≤ 0 (12) 
Where λ𝑭  are the eigenvalues of the discretised linear 

operator F. Due to the fact that |λ𝑭,max| ≅ 103 , it is required 

that 𝛿𝑡 < 0.002 to ensure convergence. This implies having a 
high sampling rate, around 500 samples/s (100 times more 
than the actual time step). For the implicit scheme the stability 
condition is: 

|1 − λ𝑭 ∙ 𝛿𝑡 |−1 ≤ 1  (13) 

The above equation is always true, since for our operator 
λ𝑭 < 0. Consequently, we choose the implicit scheme, which 
is unconditionally stable. Unfortunately, this comes with an 
additional computational load, since we need to solve a linear 
band-diagonal system for 𝒄[𝑡 + 𝛿𝑡], i.e., 

(𝑰 − 𝑭)𝒄[𝑡 + 𝛿𝑡] = 𝑨 𝒄[𝑡 + 𝛿𝑡] = 𝒄[𝑡] (14) 

Where 𝑰  represents the identity matrix of appropriate 
dimensions. 

IV. RESULTS 

We are presenting here our stationary solution 
corresponding to an eigenvalue 1. This solution respects our 
conditions at the borders and for the two interfaces. Every 
solution to our convection-diffusion problem is supposed to 
be proportional to this solution when 𝑡 → ∞ in absence of any 
perturbation. 

 

Fig.2. Stationary solution for 45 z-spatial points considered for the 
direct transport problem, space is not proportional to the sample distances 

from one medium to another (red: blood, green: skin, blue: air) 

A. Numerical protocol for direct transport process 

Synthetic data is generated using a signal model based on 
a recursive relation between a sample at instant 𝑡 + 𝛿𝑡 an the 
previous sample at time 𝑡.  

𝑨𝒄[𝑡 + 𝛿𝑡] = 𝒄[𝑡] + 𝑮𝒒[𝑡 + 𝛿𝑡]  (15) 

𝑨  is the implicit transition matrix (incorporating the 
boundary conditions), that is defined as indicated in (16): 

𝑨 = 𝑰 − 𝑭 ∙ 𝛿𝑡  (16) 
The state vector𝒄 is initialized with the stationary solution. 

𝑮  the control matrix and 𝒒  the vector containing the 
exogenous input (boundary conditions or known 
concentration rate). 

The term 𝑮𝒒 contains the initial vector concentration in 
the liquid phase that is injected in the system. This term 
portrays the variations around the average value of 𝐶𝑂2 
concentration (𝜇) in the liquid phase: a level of hypercapnia 
and hypocapnia ( 𝜇 ± 0.27 𝑚𝑜𝑙/𝑚−3 ). It represents a 
compensatory source by keeping in the chosen point the same 
value of concentration than the one provided by the blood 
flow.  
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In the framework of Markov model, one attempts to 
explain the behaviour of the physical system using just the 
previous sample in order to predict the actual one for each of 
the hierarchical layers determined by the spatial sampling. As 
we suppose a completely known signal model, we generate 
noiseless data. In order to simulate real recordings of 
transcutaneous pressure of 𝐶𝑂2, we are going to add a quantity 
of white Gaussian noise to the observed output. This will be 
used as the noisy input for the inversion of the transport model. 
We have to make sure that adding the magnitude of a random 
variable to the signal of interest the concentration will remain 
positive.  

 

Fig.3. Synthetic data generated with 45 spatial points for the direct 
transport model. Temporal sampling at 1 point every 10 seconds. 

 We simulate from 0 to 15000 s and for 25000 s to 40000 s 
a normocapnia level corresponding to a concentration of 
1.09 𝑚𝑜𝑙/𝑚3and from 15000 s to 25000 s an hypercapnia 
level of 1.36 𝑚𝑜𝑙/𝑚3. We are discretising the spatial space 
using 45 sample points in total: 15 equispaced points  per 
medium.  

 To reduce the computational load for the inversion of the 
transport process, we will choose our spatial sampling points 
to be the most parsimonious possible, yielding a good 
approximate solution. 

B. Inverse transport process.  

By contrast with the direct deterministic model, we are 
choosing for the inverse transport process a probabilistic 
framework in order to study the system dynamics. We propose 
to use a discrete state space model, since we have a set of time-
varying variables that are embedded in noise. Our objective is 
to infer recursively the 𝐶𝑂2 concentration in the liquid phase, 
as the measurements in the gaseous phase are progressively 
recorded. Except for the observations, all concentrations 
corresponding to the points on the spatial mesh are hidden 
variables of the system. In this context, a suitable tool is the 
Kalman filter to estimate the state variables. We consider the 
vector state equation derived from the physical system laws 
and the scalar observation equation: 

𝑨𝒄[𝑡 + 𝛿𝑡] = 𝒄[𝑡] + 𝑮𝒒[𝑡 + 𝛿𝑡] + 𝑤[𝑡 + 𝛿𝑡]  (17) 

�̃�[𝑡] = 𝒉𝒕𝑐[𝑡] + 𝑣[𝑡]   (18) 

where 𝑤[𝑡 + 𝛿𝑡]~𝒩(0, 𝛿𝑡 𝜎𝑤
2 ) is the noise process that 

integrates the errors related to the model and 
𝑣[𝑡]~𝒩(0, 𝛿𝑡 𝜎𝑣

2 )  describes the inaccuracies of sensor 
outputs as measurements are taken. We assume that 𝑤 and 𝑣 

are independent. 𝒉𝑡 = [0,0, … ,1]  is the observation vector 
collecting measurements in the gaseous phase. The state 
vector 𝒄[𝑡]  contains the corresponding concentrations for 
different locations, as defined in equation (11). The state 
vector is initialized with the stationary solution given by the 
eigenvector of the operator 𝑭 of which all entries have the 
same sign (corresponding to the largest eigenvalue, i.e., 
ideally 𝜆𝑭,𝑖 = 0) [6],[7]. 

As input, we will take the measurement signal generated 
in the way described in the previous section: 15 equispaced 
spatial points within a medium – 45 sample points in total – 
for the direct transport model. To get a concentration signal 
that is closer to what we obtain in the reality we will add a 
noise variance 𝜎2

𝑚𝑒𝑎𝑠 = 10−3
 (𝑚𝑜𝑙/𝑚−3)2 (light blue signal 

in figure 4). 

For the inference problem, we choose a noise variance 
equivalent to  𝜎𝑤

2 = 10−10 (𝑚𝑜𝑙/𝑚−3)2  for the model noise 
and  𝜎𝑣

2 = 10−8(𝑚𝑜𝑙/𝑚−3)2  for the measurement noise.  

We are interested in choosing a number of points for 
spatial sampling as small as possible to reduce the 
computation on the microprocessor of the device. As such, we 
select a number of 15 points allocating 5 points to each media. 
Each concentration signal in the figure 5 corresponds to the 
concentration in a point chosen within one of three media. 

 

Fig.5. Inferring blood concentration starting from the noisy observation 
generated by the direct transport model using a grid of 15 samples points  

The root mean square error 𝑅𝑀𝑆𝐸 between the true and 
estimated blood concentration is 0.0041 𝑚𝑜𝑙/𝑚3. The 𝑅𝑀𝑆𝐸 
is calculated from 104 th sample point to avoid disturbances 
due to filter adjustment. The hypercapnia level of estimated 

concentration �̃�𝑏𝑙𝑜𝑜𝑑 1: �̃�ℎ𝑦𝑝𝑒𝑟𝑐𝑎𝑝𝑛𝑖𝑎 = 0.3378 𝑚𝑜𝑙/𝑚3. 

V. DISCUSSION  

We are studying the impact of the model process noise on 
the 𝑅𝑀𝑆𝐸,  keeping the same value for the measurement 
process noise. The RMSE is computed between the variation 
in concentration obtained for the direct problem (using 45 
spatial points) and the one estimated by the Kalman filter 
(using 9 spatial points). We maintain the variance of the 
measurement process noise to 10−8 (𝑚𝑜𝑙/𝑚3)2  - a mean 
absolute amplitude of 10−4  (𝑚𝑜𝑙/𝑚3)2  (we recall that this 
noise is considered in equation (17) and gives the 
measurement noise covariance matrix used for the algorithm 
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implementation of Kalman filter) and we are varying the 
variance of model noise between [10−10, 100] (𝑚𝑜𝑙/𝑚3)2.  

 
Fig.4 Root mean square error function of the quantity of noise injected 

on the model given the power of measurement noise process 

Figure 4 shows: a minimum of RMSE around 10−5(𝑚𝑜𝑙/
𝑚3)2  and for a variance higher than 10−4 (𝑚𝑜𝑙/𝑚3)2   an 
increase in the 𝑅𝑀𝑆𝐸  estimated between the input 
concentration in the direct transport model and the related 
signal concentration in the inverse problem. Even if the 
𝑅𝑀𝑆𝐸 around 10−5 (𝑚𝑜𝑙/𝑚3)2 is minimized, the inversion of 
transport process does not permit an accurate estimation of the 
blood concentration. The signal to be estimated is hidden 
within the noise and it is impossible to track variations in 
blood concentration. Within the interval [10−10, 10−8] (𝑚𝑜𝑙/
𝑚3)2  the variations of 𝐶𝑂2  blood concentration can be 
tracked.  

Keeping the same values for noise processes, we are still 
searching to diminish the number of spatial points on the z-
grid as follows: 

Table III. Performance parameters (𝜇ℎ𝑦𝑝𝑒𝑟𝑐𝑎𝑝𝑛𝑖𝑎and 𝑅𝑀𝑆𝐸) for the 

estimation of 𝐶𝑂2 blood concentration for a different  

number of z – spatial points 

Number of z-spatial points �̃�ℎ𝑦𝑝𝑒𝑟𝑐𝑎𝑝𝑛𝑖𝑎  
(𝑚𝑜𝑙/𝑚3) 

𝑅𝑀𝑆𝐸 
(𝑚𝑜𝑙/𝑚3) Blood Skin Air 

5 5 4 0.3387 0.0041 

5 4 4 0.3388 0.0041 

4 4 4 0.3762 0.0040 

4 4 3 0.3782 0.0040 

4 3 3 0.3784 0.0040 

3 3 3 0.3789 0.0039 

We can observe that when a smaller number of points for 
the inversion problem is used than for the direct problem, the 

level of estimated concentration �̃�𝑏𝑙𝑜𝑜𝑑 1 is smaller than the 
level introduced for the direct problem.  

VI. CONCLUSIONS AND PERSPECTIVES  

 In this paper, we have presented a method for the 

inversion of convection-diffusion equation using the 

algorithm proposed by Kalman. In this innovative model, we 

take care of both the convection associated with the blood 

flow in the blood compartment and with the convective air 

flow in the  air compartment, and the diffusion phenomena in 

each compartment. The synthetic data were generated using 

a Markovian model, the system being completely described 

by the physical laws. The continuous system of equations is 

discretised using a centred difference method. A Kalman 

filter was proposed in order to estimate the hidden variables 

and infer blood concentration of the gas compound. We have 

shown that the quantity of noise on the model has an impact 

upon the estimation: a smaller variance for the model noise 

does permit to follow the measurement. Contrary, if the 

model noise value would be higher or zero, the inference 

would completely depend on our model and the variations 

recorded at the skin surface are no longer followed. 

Regarding the bias between real levels and those estimated, 

there is a compromise between noise variance and signal 

variance introduced by the algorithm of Kalman proposed for 

the inversion of the problem. Also there is a compromise 

between choosing a small number of points to reduce the 

computational time and the precision on the amount of 

concentration estimated. A transcutaneous device for the 

measurement of a gas compound pursue the variations in 

concentration. The method proposed here is adequate to track 

that type of changes, even if a quantitative estimator was not 

obtained so far. 

 In the near future, we attempt to develop a more 

accurate transport model derived for the 2D transport 

convection-diffusion equation. This model is supposed to 

better describe the physics for gas desorption phenomena . A 

validation of this method is expected to be performed on the 

experimental data. 
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