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Abstract—This treatise proposes a dilated convolutional multi-
layer perceptron (MLP)-mixer model (hereafter referred to as
DiCoMLP-Mixer) for oral connective tissue (OCT) grading. The
proposed DiCoMLP-Mixer framework comprehends dense multi-
scale contextual feature representation by enabling exponential
receptive field expansion without sacrificing resolution via dilated
convolutions. The MLP-mixer backbone in the DiCoMLP-Mixer
architecture leverages the attention mechanism of a transformer
model for saliency abstraction in oral mucosa histopathological
images (OMHIs) by the spatial encoding of OMHI patches. This
study focuses on the oral mucosa’s sub-epithelium region, which
has considerable clinical significance but is understudied in the
literature. DiCoMLP-Mixer’s exhaustive experimental validation
on two OCT layers of the sub-epithelium, namely papillary (L1)
and reticular (L2) for oral cancer (OC) grading, classifying the
three major oral potentially malignant disorders (OPMDs) and
OC from healthy OCTs. The ablation study with the existing
MLP-mixer model evinces enhanced OC screening performance,
while Grad-CAM heatmaps exhibit DiCoMLP-Mixer’s consistent
clinical saliency for precise OC detection.

Index Terms—Bright-field microscopy; oral cancer; OPMDs;
sub-epithelium; MLP mixer; dilated convolution; explainable AI.

I. INTRODUCTION

GLOBOCAN reports an estimated 377,713 new OC cases
and 177,757 OC-related deaths globally in 2020 [1], making
OC one of the most frequent malignancies worldwide [2].
Similarly, Oral Cancer Foundation reports an estimated 53,000
new OC cases registered in the United States in 2019 [1].
Excessive alcohol consumption and widespread use of betel
quid and tobacco in South Asia’s low- and middle-income
countries account for two-thirds of the global OC incidence
[3]. OC is identified by late diagnosis, high fatality, morbidity,
low survival rates, and costly treatment, especially in later
stages. Further, the lack of public awareness and health pro-
fessionals’ understanding of OC markers is responsible for its
late identification [4].

OC is clinically diagnosed by distinguishing between malig-
nant and ulcerated lesions in the oral cavity. During prognosis,
the fundamental difficulty for clinicians is detecting benign
lesions that mimic malignant ones. Pre-existing OPMDs like
oral submucous fibrosis (OSF), oral leukoplakia (OLKP),
and erythroplakia are the most common OC precursors [5].
Early-stage OPMD diagnosis reduces OC’s risk and tumor
progression by arranging timely clinical treatment regimens
for patients’ survival rate improvement [6]. Several image
modalities such as microscopic [6], [7], [8], hyperspectral

[9], computed tomography [10], autofluorescence [11], fluo-
rescence [12], and standard white light image of oral cavity
structures [13] has been employed for OC screening. The gold
standard for detecting OPMDs and aberrant cellular activity
is the light-field microscopic histopathological assessment of
biopsy samples [8]. However, manual diagnosis of OPMD
lesions is tedious, subjective, and dependent on the clinician’s
expertise [7]. Computer-aided diagnostic (CAD) systems with
high sensitivity are imperative to overcome the hurdles men-
tioned above during OC detection and reduce the risk of early-
stage malignant lesions being wrongly categorized as benign.

The prior works on OC diagnosis from OMHIs comprise
both shallow feature-based machine learning (ML) and deep
learning (DL) methods. Hand-crafted features include statis-
tical eccentricity and compactness [14], morphological [15],
textural feature analysis [16], multifractal alterations [17],
histogram [18], gray-level co-occurrence matrix (GLCM) [19],
local binary pattern (LBP) [20], higher-order statistics (HOS)
[6], Gabor wavelet [21], and Fuzzy statistics [22], with ML
classifiers like support vector machine (SVM) with radial
basis function (RBF) kernel, Bayesian classifier, k-means,
Gaussian mixture model (GMM) and Fuzzy c-means clus-
tering (FCM) [22]. DL methods include convolutional neural
networks (CNN) [23]. The literature on OPMD analysis is
abundant on morphological alterations in the epithelial region,
and to the best of our knowledge, sub-epithelial region analysis
has received little attention. Further, the prior art in [24], [25]
highlights that collagen fibers of the Extracellular Matrix in the
subepithelial layer undergo structural change with the onset of
malignancy, with substantial microscopic variations in the sub-
epithelial collagen fibers, have been observed for OSF groups
[26]. Quantitative analysis of collagen evolution is essential to
assess OSF progression into OSF with dysplasia (OSFD), and
OSF without dysplasia [27].

The sparsely explored sub-epithelial oral mucosa (having
high clinical importance) and the need for robust CAD to char-
acterize the collagen adaptations from healthy (NOM) tissues
to OPMDs (OSF, OSFD, and OLKP) and OC classes motivate
us to investigate the recent state-of-the-art DL models for oral
cavity tissue characterization. Oral oncopathologists guide the
cropping of tissue-index transmission patches (TITPs) from
OMHIs belonging to the OCT layers of the sub-epithelium at
two different zones, namely papillary (L1) and reticular (L2).
We proposed a multi-scale context aggregation enriched MLP-
mixer model (hereafter referred to as DiCoMLP-Mixer) on
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Figure 1: OC screening pipeline showing data acquisition, pre-
processing, extraction of OMHIs and TITPs, and schematic
diagram of the DiCoMLP-Mixer framework.

these TITPs for OMHI grading. The DiCoMLP-Mixer model
uses dilated convolution-based patchify stem to comprehend
the multi-scale spatial-deformation dynamics.

The OC screening workflow containing the modular level
schematic of the DiCoMLP-Mixer framework is shown in
Fig. 1. The following research contributions are derived from
DiCoMLP-Mixer’s design, application, and assessment.

• DL-based OC screening using OMHIs collected from
sub-epithelial OCTs (clinical value for oral onco-
pathologists) is sparsely explored in the literature.

• Extensive inter-class classification of five study groups:
healthy, OPMDs (OSF, OSFD, OLKP), and OC are
analyzed for OMHIs from two OCT (L1 and L2) layers
of the sub-epithelium.

• Proposed DiCoMLP-Mixer model incorporates a dilated
convolutional patchify stem on the MLP-Mixer [28].

• Grad-CAM-based saliency heatmaps evince rich repre-
sentation learning and provide locally interpretable un-
derlying insights into DiCoMLP-Mixer’s predictions.

The remaining paper is structured as follows: Section II
describes the dataset and DiCoMLP-mixer model. Section III
discusses the experimental results. Section IV concludes the
paper.

II. MATERIAL AND METHODS

A. Dataset Description

1) Study Design and Data Acquisition: The experimental
study (GNIDSR/IEC/07/16), was approved by the institu-
tional ethics committee. All data collection was done in
full conformity with the Indian Medical Association’s ethical
principles and standards, including the World Medical Asso-
ciation’s and the Helsinki Declaration’s ethical principles and
guidelines, and with the informed permission of all patients.
Incisional oral biopsy specimens from the buccal mucosa of
patients were taken at the Guru Nanak Institute of Dental
Science and Research (GNIDSR) in Kolkata, India. Expert
onco-pathologists histopathologically graded these specimens
following Haematoxylin and Eosin staining, and co-morbid
samples were excluded. The tissue specimens for the control

group (healthy) were taken from the disto-buccal region of
the mucoperiosteal flaps. They were raised for trans-alveolar
extraction of an impacted mandibular third molar tooth from
healthy people with no clinical symptoms of OPMD or oral
habits. Our earlier paper [17] detailed the pre-processing of
the biopsy specimens for microscopic slide imaging using a
bright-field inverted optical microscope (Zeiss Observer.Z1,
Carl Zeiss, Germany) and an attached CCD camera (AxioCam
MRC, Carl Zeiss) under 40× objective (with pixel granularity:
0.157µm and with a final magnification of 400×).

2) Sub-epithelium Zoning and TITP Generation: A
loosely defined boundary segregated the sub-epithelial OCT
into two layers: papillary (L1) and reticular (L2). The papil-
lary layer under the epithelium comprises tiny, loosely packed
collagen fibers, and the lower reticular layer is mainly made up
of firmly dense collagen fibers [29]. The clinical significance
of (L1) and (L2) zones in OC progression studies and their
extraction followed by generation of TITPs for the current
study is explained in detail in our earlier work in [17]. Table
I summarize the TITP statistics.

Table I: Dataset statistics.
Class No. of. OMHIs No. of TITPs

L1 L2

NOM 35 98 98

OSF 36 101 96

OSFD 38 108 101

OLKP 28 99 152

OC 30 92 110

Total 167 498 557

B. Proposed DiCoMLP-Mixer Model

MLP-Mixer [28] has been used as the backbone architecture
for proposed DiCoMLP-Mixer. We have integrated a dilated
convolutional patchify stem to this MLP-Mixer to encode com-
putationally efficient multi-scale contextual feature abstraction
by exponential receptive field expansion. The brief functional-
ity of DiCoMLP-Mixer’s different modules is explained below:

C. Backbone MLP-Mixer for Attention Mechanism

The layers in modern MLP-based DL architectures mix
features at a specific spatial location, between several spatial
locations, or both simultaneously. The per-location (channel-
mixing) and cross-location (token-mixing) processes are sep-
arated in the MLP-mixer architecture [28]. A sequence (S) of
non-overlapping image patches is given as input to an MLP-
mixer. Each patch is projected to a specified hidden dimension
(C) to produce a two-dimensional real-valued input table,
X ∈ RS×C . The number of patches for an input image of
size (H,W ) and patch size (P, P ) is S = HW/P 2. With
the same projection matrix, all of these patches are linearly
projected. The MLP-mixer comprises multiple layers of equal
size, each containing two MLP blocks. The first is the token-
mixing MLP, which works on X columns (i.e., it’s applied to
a transposed input table X⊤), maps RS 7→ RS , and is shared
across all columns. The second is the channel-mixing MLP,
which acts on rows of X and maps RC 7→ RC . It is shared
across all rows. Each MLP block has two fully-connected
layers, and nonlinearity (such as GELU) is applied to each row
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of the input data tensor individually. Finally, the MLP-mixer
employs a typical classification head with a linear classifier
and a global average pooling layer. MLP-mixer details can be
found from [28].

D. Dilated Convolutions for Multi-scale Contextual Features

Dilated convolutions enable computationally efficient ex-
ponential receptive field expansion for multi-scale contextual
feature learning without compromising resolution [30].

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

The MLP-Mixer [28] and proposed DiCoMLP-Mixer mod-
els are implemented in Python using Tensorflow and Keras
libraries.The models are trained for 200 epochs using Adam
optimizer with batch size = 256, learning rate = 0.005, and
weight decay factor = 0.0001. Sparse categorical cross-entropy
and accuracy are monitored over 1000 epochs for training
convergence. Xaviar uniform initializer is used for model
parameter initialization, and early stopping is envisaged to al-
leviate overfitting. The model inputs are resized to 128x128x3
with patch size = 6x6, embedding dimension = 64, No. of
heads in the attention module = 2X embedding dimension,
and No. of transformer blocks = 8.

B. Training/Testing Protocol and Performance Evaluation

The TITPs obtained for (L1) and (L2) zones are split
randomly in the ratio of 80:20 for training and validation.
All the model predictions output can be categorized as TP
(true-positive), TN (true-negative), FP (false-positive), and FN
(false-negative). Accordingly, different performance evaluation
metrics (PEM) such as accuracy (Acc.), precision (P), recall
(R), and F1 score (F1) are computed for method validation.
They are defined as: Acc. = TP+TN

TP+TN+FP+FN , P = TP
TP+FP ,

R = TN
TN+FN , and F1 = 2TP

2TP+FP+FN . Here, TP/FP (and
TN/FN) signify the cardinality of correct/incorrect predictions
for the positive (and negative) class, respectively.

C. Classification Results and Ablation Study

Table II summarize the class-specific PEM scores averaged
over the 5-folds. The ablation study concerning the introduc-
tion of dilated convolutions to the existing MLP-Mixer [28],
and DiCoMLP-Mixer’s PEM scores outperform the MLP-
Mixer on TITP sets of both L1 and L2 OCT layers. Moreover,
the reticular’s (L2) significance in OC progression analysis
seems to be more compared to papillary (L1).

D. Comparative Evaluation

We performed a comparative analysis of our DiCoMLP-
Mixer framework with the prevalent state-of-the-art meth-
ods, and contemporary pre-trained DL models, which have
achieved great success in various image processing tasks [31].

1) Comparison with Pre-trained Models: The pre-trained
networks are trained on a large-scale database of more than
a million images, and 1000 classes have inherently powerful
rich features [31]. We have fine-tuned the deeper layers to
adapt new features pertinent to the OC screening. Columns
2 in Table III exemplify the model complexity regarding the

Table II: PEM (%) for MLP-Mixer [28] and DiCoMLP-Mixer.
Architecture Dataset Class P R F1 ACC

MLP-Mixer [28] L1 NOM 64.42 88.85 74.78

OSF 82.66 64.42 72.47

OSFD 89.49 86.47 88.68 84.89

OLKP 94.05 90.73 93.29

OC 90.44 93.28 91.14

L2 NOM 89.75 71.67 79.33

OSF 67.42 79.33 72.92

OSFD 84.23 93.85 89.75 87.17

OLKP 92.65 96.16 90.77

OC 94.57 91.23 95.56

DiCoMLP-Mixer L1 NOM 94.08 93.85 93.27

OSF 91.11 91.85 91.88

OSFD 91.42 94.13 91.33 91.29

OLKP 92.72 94.42 93.43

OC 94.15 94.11 94.96

L2 NOM 92.47 92.66 92.68

OSF 96.37 94.33 95.62

OSFD 94.51 94.7 94.27 93.67

OLKP 93.65 94.2 94.78

OC 94.3 92.9 93.6

MLP-Mixer [28] run in-house. BOLD signifies better performance.

Table III: Accuracy comparison with pre-trained networks.
Architecture PM L1 L2

ResNet-50 25.63 46.87 56.25

ResNet-101 44.70 84.37 89.75

ResNet-152 60.38 84.37 90.62

VGG-16 138.3 87.50 90.17

VGG-19 143.6 81.63 85.93

DenseNet 20.0 88.18 91.31

Inception 23.85 73.43 87.5

Inception-ResNet 55.87 76.56 82.81

Xception 22.91 82.81 87.50

MobileNet 3.53 75.39 78.12

DiCoMLP-Mixer 4.5 91.29 93.67

PM = number of parameters (in millions).

number of trainable parameters, while columns 3 to 4 tabulate
the TITP grading accuracy for L1 and L2 zones, respectively,
of sub-epithelial OCT. From Table III, DiCoMLP-Mixer ex-
hibit the highest classification accuracy with reduced network
depth and comparable trainable parameters and outperform its
nearest competitor, DenseNet, by 3.11% and 2.36% on L1 and
L2 zones, respectively.

2) Comparison with the State-of-the-art: A brief review
of the prevalent OC screening techniques from OMHIs and
their performance comparison is summarized in Table IV. To
the best of our knowledge, this work is one of the very few
research to address a broader study of five classes: healthy,
OPMDs (OSF, OSFD, OLKP), and OC and the first to explore
MLP-based DL models for OC taxonomy.
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Figure 2: Visualizing TITPs (1st row) and their corresponding Grad-CAM heatmaps (2nd row) for (a) L1-NOM, (b) L2-NOM,
(c) L1-OSF, (d) L2-OSF, (e) L1-OSFD, (f) L2-OSFD, (g) L1-OLKP, (h) L2-OLKP, (i) L1-OC, and (j) L2-OC. Red indicates
area of highest attention and blue indicates area of lowest attention.

Table IV: Prior art comparison.
Ref,

Years
Methodology:

(Features + Classifier) NI NC PEMs (%)

AC SN SP

[14], 2009 Eccentricity, Compactness, SVM 10 2 88.6 90.4 87.5

[15], 2010 Morphological feature, SVM 32 2 97.1 N.R N.R

[16], 2010 Textural analysis, SVM-RBF 159 2 88.2 89.9 90.1

Textural analysis, Bayesian 159 2 90.7 94.7 86

Fuzzy divergence, morphological
feature, bayesian 750 2 96.5 96.4 96.6

[22], 2012 Fuzzy divergence, morphological
feature, K-means 750 2 84 84.4 83.2

Fuzzy divergence, morphological
feature, FCM 750 2 89.4 90.1 88.1

Fuzzy divergence, morphological
feature, GMM 750 2 90.3 89.6 91.7

[19], 2018 Histogram, GLCM, SVM 269 2 89.7 94 N.R

[20], 2011 LBP, SVM 158 3 83.5 82.8 87.8

HOS, SVM 158 3 92.4 94 91.2

[18], 2011 Statistical feature, SVM 30 3 86.6 80.6 97.84

[21], 2011 Gabor Wavelet, SVM 158 3 88.3 N.R N.R

[6], 2012 HOS, LBP, Fuzzy 158 3 95.7 94.7 98.8

[32], 2011 Statistical and morphological
feature, SVM 269 3 93.5 91.6 92.3

[23], 2022 TL, CNN 1200 2 83.81 74.4 89.1

This Work MLP-Mixe, Dilated Conv. (L1) 498 5 91.29 92.6 90.9

MLP-Mixer, Dilated Conv. (L2) 557 5 93.67 94.5 92.9

NI: Total No. of images, NC: No. of classes present,
NR: Not reported, TL: Transfer learning.

E. Explainability of DiCoMLP-Mixer’s Predictions

Fig. 2 depicts the gradient-weighted class activation map-
ping (Grad-CAM) explainability of DiCoMLP-Mixer’s deci-
sions on the TITPs collected from L1 and L2 zones for
different grades. Grad-CAM localizes the predicted class’s
activation maps and highlights the clinically significant re-
gions for prediction. The areas having large gradient values
contribute more to the final predicted score [33]. Saliency
maps in Fig. 2 highlight the efficacy of the DiCoMLP-Mixer
model in comprehending the micro-structural complex tissue
convolutions manifested by the dense and compact regions of
the TITPs and their relative significance towards final grading.

IV. CONCLUSION

This work examines the diagnostic efficacy of DiCoMLP-
Mixer, a multi-scale context aggregation enriched MLP-mixer
model for an exhaustive characterization of TITPs belong-
ing to five study groups: healthy, OPMDs (OSF, OSFD,
OLKP), and OC. Dilated convolutions in the patchify stem of
DiCoMLP-Mixer abstract the computationally efficient multi-

scale contextual feature abstraction by exponential receptive
field expansion. At the same time, the MLP-mixer backbone
in DiCoMLP-Mixer learns the saliency pertinent to partic-
ular sub-epithelial OCT grades. It leverages the attention
mechanism of transformers in OMHIs by ensemble feature
combination of the OMHI patches and the spatial encoding
of these patches. The TITPs are obtained from the OMHIs
acquired at two sub-epithelium zones of the OCT layers:
papillary (L1) and reticular (L2). These sub-epithelium zoning
accentuates the significance of depth-aware subtle structural
variations with the onset of pre-cancerous activity. Grad-
CAM heatmap localizes the saliency of the predicted class’s
activation and justifies DiCoMLP-Mixer’s explainability for
clinical deployment.
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