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Abstract—
One of the largest problems in medical image processing

is the lack of annotated data. Labeling medical images often
requires highly trained experts and can be a time-consuming
process. In this paper, we evaluate a method of reducing the
need for labeled data in medical image object detection by
using self-supervised neural network pretraining. We use a
dataset of chest X-ray images with bounding box labels for
13 different classes of anomalies. The networks are pretrained
on a percentage of the dataset without labels and then fine-
tuned on the rest of the dataset. We show that it is possible
to achieve similar performance to a fully supervised model
in terms of mean average precision and accuracy with only
60% of the labeled data. We also show that it is possible
to increase the maximum performance of a fully-supervised
model by adding a self-supervised pretraining step, and this
effect can be observed with even a small amount of unlabeled
data for pretraining.

Index Terms—contrastive learning, deep learning, medical
image processing, object detection, self-supervised learning

I. INTRODUCTION

In medical image processing, the lack of annotated data
is a common obstacle for deep learning models. To function
robustly and to show their generalizability potential, deep
neural networks require a large amount of annotated images
[1]. However, annotating medical images often requires time-
consuming, tedious work from trained clinitians. Hence, there
is a huge need to improve the data efficiency and robustness of
deep learning networks for medical image processing trained
on smaller datasets. Furthermore, there is a need to make
the labeling process faster to save experts’ time. This paper
presents a step towards both of these goals. The primary
contribution of the paper is the evaluation of a method that uses
self-supervised learning to extract salient information from
unlabeled images which can then be used to more easily train
an object detection model on a more limited dataset of labeled
images.

We show that it is possible to improve the performance
of an object detection model for medical images by utilizing
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self-supervised learning in a pretraining phase. In addition, we
also show that it is possible to achieve similar performance to
a fully supervised model with only 60% of the labeled data.
The code for all of the experiments in this paper is available
at github.com/marinbenc/ssl-for-medical-object-detection.

A. Related work

There are very few papers published that present methods
for object detection in chest X-ray images. One notable paper
similar to our work is the one by Luo et al. [2]. They use
the same dataset as the experiments presented in this paper
and train a YOLOv5 model with a ResNet50-based backbone.
They achieve results similar to the ones in our experiments,
however, they do not employ any kind of unsupervised learn-
ing and train on the full labeled dataset. The goal of this
paper is not to beat the state of the art performance, but rather
to show if similar results could be achieved with much less
labeled data.

1) Improving data efficiency of neural nets: There are
several ways to try to utilize unlabeled data or data prepared
for other tasks to improve the data efficiency of medical
image processing, including semi-supervised learning, transfer
learning and, more recently, self-supervised learning. While
transfer learning on large image datasets such as ImageNet
is very common in medical image processing, Raghu et al.
[3] found that this provides little benefit in terms of model
performance, but does improve convergence speed during
training.

Another way to utilize an unlabeled dataset to improve
performance of a model is semi-supervised learning, where
the unlabeled dataset is mined for soft signals to nudge the
model towards better overall performance. One such example
is the one by Liu et al. [4] where they present a semi-
supervised learning method for medical image classification
using a combination of unlabeled and labeled data from the
same domain.

2) Self-supervised learning: Recently more and more pa-
pers use self-supervised learning (SSL) to pre-train neural
networks on unlabeled data, and then fine-tune the networks
on the available labeled data. SSL is a method of unsupervised
neural network training where the goal is to train an encoder
that will understand useful features for a downstream task such

1328ISBN: 978-1-6654-6798-8 EUSIPCO 2022



as object detection, classification, or similar. SSL has been
shown to improve data efficiency [5] as well as robustness to
dataset imbalance [6].

There are several approaches to training the encoder such
that it learns useful features. One approach is to use a
constructed pretext task for which one can automatically obtain
the correct solution from unlabeled data so that the correct
solution can be used for supervised training. An example of
this approach is presented by Noroozi and Favaro [7] where
the neural network is trained to solve a jigsaw constructed
from an unlabeled dataset.

Recently, a more common approach to SSL is contrastive
learning. In contrastive learning, the encoder is trained to mini-
mize the distance between feature vectors of positive examples
and maximize the distance between negative examples. The
positive examples are constructed in an unsupervised manner
by e.g. randomly augmenting an image twice, thus producing
two examples for which the feature vectors should be similar.
Among others, notable examples of such approaches are
SimCLR [5] and MoCo [8].

3) Self-supervised learning in medical images: Due to
its potential to improve data efficiency, SSL is a promising
approach for medical image processing. Several recent papers
proposed SSL methods both using the pretext task approach
[9], [10] as well as contrastive learning [11]. Several papers
evaluate self-supervised pretraining on an unlabeled subset of
the data for medical imaging tasks. Taleb et al. [12] evaluate a
variety of self-supervised pretraining approaches for medical
image segmentation in 3D MRI and CT images as well as
classification on 2D fundus photography images. They use
unlabeled data of the same modality but from a different
corpus. Azizi et al. [13] introduce a novel contrastive learning
method and evaluate it at various percentages of used dataset
labels on dermatology and chest X-ray classification. However,
to our knowledge the are currently no papers that evaluate self-
supervised pretraining for object detection tasks in medical
images.

II. DATASET DESCRIPTION AND DEMOGRAPHICS

The dataset used in this paper is a dataset of 15,000 labeled
chest radiographs called VinDr-CXR, described in more detail
in [14]. While the original dataset contains 3,000 additional
test images, we were not able to obtain the labels for these
images, and they were not used in this paper. Each scan of the
dataset was labeled by three separate radiologists. The dataset
was collected from two major Vietnamese hospitals and is to
our knowledge the largest dataset for radiograph object detec-
tion. Therefore, it is a good indicator for the generalizability
of our experiments on other radiograph datasets.

A. Data preparation

Each DICOM image from the dataset was resized to a
resolution of 512 × 512 pixels. We discard all examples for
which there is no anomaly found (examples labeled as “no
finding”). After discarding, we are left with a total of 4,394
images. We randomly split this dataset into a training set (70%,

Fig. 1. Examples of bounding box averaging. The images on the left show the
original bounding boxes, while the images on the right show fused bounding
boxes which are used in our experiments.

3,075 images), validation set (10%, 440 images) and a test
set (20%, 878 images). The training set was used to train
the models, the validation set was used to tune the model
hyperparameters and determine when to stop training, and the
test set is used for final evaluation. The model did not have
access to the test set during training. The class distribution of
the full dataset is shown in Fig. 3. During training, each image
had a 50% chance of being flipped horizontally.

Each image can have one or more labels from multiple
experts, and these labels often overlap. To produce the least
noisy labels, we average overlapping bounding boxes of the
same class into one bounding box. To determine if two boxes
are overlapping, an intersection-over-union (IoU) threshold of
20% is used. This approach is based on weighted boxes fusion
described in [15] but modified such that each bounding box
has equal weight and confidence since they were manually
labeled by an expert. An example of fused bounding boxes is
shown in Fig. 1.

III. METHODS

A summary of our approach is shown in Fig. 2. The main
goal of this paper is to analyze how self-supervised pretraining
affects data efficiency for object detection in medical images.
Therefore, we first train a baseline deep learning model with
no pretraining and on the full labeled training dataset following
a standard approach for this type of problem, described later in
this section. This model will be used as a point of comparison
to more objectively evaluate the pre-trained models.

To evaluate the pretraining, we randomly split the training
dataset into two separate datasets, a pretraining and fine-
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Fig. 2. A summary of our approach. A percentage of the training dataset
is moved to the pretraining dataset and used to pretrain the model, which is
then fine-tuned with the rest of the training data. The pretraining datasets are
unlabeled. A separate baseline model is trained using the full labeled dataset.

tuning dataset. For the pretraining dataset, we discard all class
labels, as this dataset will be used to pretrain the model using
self-supervised learning on unlabeled data. The fine-tuning
dataset will then be used to fine-tune the pre-trained model
using standard supervised learning. We train nine different pre-
trained models in total, ranging from 10% to 90% of the total
training set in the unlabeled pre-train dataset, in increments of
10%.

A. Balancing the dataset

As shown in Fig. 3, the dataset is highly imbalanced. To
improve class balance during training we use augmentation to
oversample examples with less- represented classes. We use
the oversampling approach described in [16] with an over-
sampling threshold of 0.4. This balancing is performed online
during pre-training and fine-tuning and only on the training
set. We found that this approach significantly improved the
mean average precision when averaged across all classes.

B. Baseline model details

For an objective and fair comparison, we train a baseline
model using a standard deep learning-based approach for ob-
ject detection. We use a Faster R-CNN-based model [17] with
a ResNet-50 encoder [18]. The baseline model is initialized
using pretrained weights trained on the COCO dataset for 12
epochs, a batch size of 2, and using the SGD optimizer with
a learning rate of 0.0002, the momentum of 0.9, and a weight
decay of 0.0001. Training is done by using the SGD optimizer
with a learning rate of 0.001, a momentum of 0.9, a weight
decay of 0.0001, and a batch size of 8. The baseline model
converged in 15 epochs. We use the cross-entropy loss for the
classes and the L1 loss for the bounding boxes.

Fig. 3. A histogram of the class balance of the original dataset (by number
of images containing the class), and the histogram of the oversampled dataset
used for training.

C. Pretraining model details

The pretraining model we use is a SimCLR-based model [5]
to pre-train a ResNet-50 backbone, the same backbone used
in the baseline model. We train the SimCLR model (described
later in this section) using the unlabeled pretraining dataset.
We then use the pre-trained backbone in the same model as
our baseline model and fine-tune the final model on the fine-
tuning dataset. The result is a model similar to our backbone
model but trained on fewer labeled data.

In our experiments, we use the following augmentations for
SimCLR training:

1) A random crop and resize of the original image by a
factor of 0.2 to 1.

2) A random horizontal flip (with a 50% chance).
3) A random Gaussian blur with σ between 0.1 and 2, and

a kernel size of 21.
4) A random amount of Gaussian noise with σ between

12.5% and 25% of the mean image pixel value.
In addition, each training and validation image has his-

togram normalization applied.
We pretrain the models using the SGD optimizer with a

learning rate of 0.001, a momentum of 0.9, and a weight decay
of 5 · 10−4. We also use a cosine annealing learning rate as
described in [19]. For pretraining we use the NTXent loss as
described in [5] with a temperature of 0.5. The pretraining was
stopped after 30 epochs in all experiments.

IV. RESULTS

A summary of the results of our experiments is shown
in Table I. All of the results in this section are calculated
on the testing dataset. Our main evaluation metrics are the
mean average precision (mAP), averaged across all classes and
IoU thresholds from 0.5 to 0.95 in 0.05 intervals (mAP@[.5,
.95]), as is standard for benchmarking the COCO dataset. We
also calculate the mAP at a fixed IoU of 0.5 (mAP@0.5),
which is standard for evaluating models on the PASCAL VOC
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TABLE I
A SUMMARY OF THE RESULTS OF OUR EXPERIMENTS. THE DETAILS OF
THE METRICS ARE DESCRIBED IN IV. TRAINING IMAGES IS THE TOTAL

NUMBER OF LABELED TRAINING EXAMPLES AVAILABLE TO THE MODEL.

mAP mAP50 mAP
small

AR AR
small

Training
images

Baseline 0.129 0.278 0.021 0.412 0.154 3075

SSL 10% 0.142 0.284 0.026 0.413 0.156 2767

SSL 20% 0.139 0.292 0.020 0.412 0.158 2460

SSL 30% 0.130 0.268 0.014 0.402 0.146 2152

SSL 40% 0.123 0.272 0.014 0.394 0.131 1845

SSL 50% 0.109 0.248 0.011 0.387 0.131 1537

SSL 60% 0.104 0.230 0.011 0.378 0.120 1230

SSL 70% 0.095 0.202 0.007 0.363 0.108 922

SSL 80% 0.081 0.178 0.006 0.338 0.089 615

SSL 90% 0.060 0.135 0.003 0.303 0.064 307

dataset. In addition, we calculate the average recall given 100
detections per image (AR@100). We separately calculate the
mAP[.5, .95] as well as the AR@1000 for small objects (less
than 32 pixels2).

The baseline model, trained on all of the labeled data,
achieves an mAP of 0.129. In addition, by adding pretraining
on a small percentage of the dataset (20% or fewer) the
performance improves for all of the metrics we calculated. For
instance, when pretraining on 10% of the data (i.e. removing
10% of the labels) the mAP increases to 0.142. This is the best-
performing model in our experiments. However, even with just
60% of the labeled data, we achieve an mAP of 0.123, more
than 95% of the performance of the baseline model in terms
of mAP. Similar results can be seen in terms of recall — the
baseline model achieves an average recall of 0.412 while with
60% of the labels we achieve an AR of 0.394, more than 95%
of the base model’s AR.

However, the differences are larger when looking at small
objects. While the baseline model achieves a 0.021 mAP for
small objects, the model trained on 60% of the labeled images
achieves a small objects mAP of 0.014, 66.66% of the baseline
model. Similarly, the model trained on 60% of the labeled
images achieves a small object AR of 0.131, 85% of the
baseline model’s small object AR of 0.154.

A graphical summary of the class-wise results is shown in
Fig. 4. The performance on most classes drops off linearly
between the baseline model and the model trained on 60%
of the labels data. The dropoff becomes more significant after
training on less than 60% of the labels. In all cases, the mAP
at 60% of the labeled data is highly correlated with the mAP
across all classes as described earlier in the section, and the
same conclusions apply to all classes.

The model performs the best at detecting cardiomegaly
and aortic enlargement, two classes with a large number of
examples and a large average object area size. All of the mod-
els perform significantly worse at detecting other anomalies.
However, by adding pretraining on a small percentage of the

Fig. 4. The mean average precision (mAP@[.5, .95]) across different
percentages of labeled data for different classes in the dataset. The model
at 100% of labeled data is the baseline model.

data (20% or fewer) the mAP improves for almost all classes,
most significantly for detecting other lesions and infiltration.

We also evaluated our experiments in terms of IoU, and
compared the inter-observer IoU between multiple experts and
our experiments, as shown in Table II. The original dataset
was labeled by a group of three radiologists from a total
of 17 radiologists identified as R1 through R17. In our test
dataset, 747 images (85% of the test dataset) were labeled
by both radiologists R9 and R10, while 750 images (85.4%
of the test dataset) were labeled by both radiologists R9 and
R11. Therefore, we calculate the inter-observer IoU between
radiologists R9 and R10 as well as R9 and R11, since they
represent the majority of the dataset. For calculating the inter-
observer IoU, we only take into account labels of the same
class where the IoU overlap is over 0.2, to avoid counting
multiple instances of a class as the same prediction. We
calculate the models’ IoU metric as the mean of IoUs between
each fused ground truth annotation and the maximum-overlap
model prediction of the annotation’s class.

The inter-observer IoU is between 0.58 and 0.67, while the
IoU between ground truth and predicted labels of our baseline
model is 0.57, slightly worse than the variability between two
human experts. The IoU starts to drop after more than 20%
of the labels are removed. At 60% of the labels, the IoU
is 0.545, more than 96% of the baseline IoU. Note that the

TABLE II
THE INTER-OBSERVER IOU BETWEEN RADIOLOGIST R9 AND

RADIOLOGISTS R10 AND R11, AS WELL AS THE MEAN IOU OF THE
MODEL’S PREDICTIONS.

mean IoU σ

R09 vs R10 0.580 0.284

R09 vs R11 0.674 0.149

Baseline 0.565 0.309

SSL 10% 0.566 0.309

SSL 20% 0.565 0.308

SSL 30% 0.555 0.312

SSL 40% 0.545 0.316
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model’s IoU is based on the best predictions coming from the
model. Under real-world conditions, it is not known which
predictions are best and some heuristic is needed which might
not always choose the best prediction, so the presented IoU
values should be interpreted as best-case scenario IoU values.
Still, the relative IoU differences between the baseline and the
pretrained models should remain the same.

V. DISCUSSION AND CONCLUSION

Our results on medical object detection experiments show
that it is possible to use fewer labeled examples and still
achieve similar performance by utilizing self-supervised pre-
training. All of the global metrics we measured, including
average precision and recall as well as IoU, remain within
95% of the baseline model’s performance. The same is true
for class-based metrics. In our experiments, using 60% of
labeled data is a good compromise between using fewer labels
while still maintaining good object detection performance. We
hypothesize that the backbone trained under self-supervised
contrastive learning produces more salient feature maps and
thus overcomes the lack of labels when compared to the
baseline model.

The biggest performance loss for the self-supervised models
is in smaller objects, where the model trained on 60% of
the labeled data achieves less than 65% of the small object
mean average precision of the baseline model. A very common
occurrence in deep learning models for object detection is a
gap in performance between predicting small and large objects.
Smaller objects are less frequent, and cover a smaller area of
the image, making it difficult for models to predict them. This
problem can be overcome at least in part using augmentation
[20], and it’s possible our results could be improved by
adding oversampling and small object augmentation to both
the training and pretraining steps.

However, at 60% of labeled data, the model still retains 85%
of the small object recall of the baseline model. In medical
image processing tasks, recall is often more important than
precision as the cost of finding false positives is much lower
than the cost of missing true positives. Therefore, the reduction
in small object detection performance is less severe than it
appears from the mAP.

We hope that the findings of this paper will lead to enabling
more deep learning-based methods in medical object detection
with fewer labeled data, as well as increase the performance
of existing models trained on small datasets. This paper is also
an indicator that self-supervised learning is a very promising
avenue for future research in medical image processing.
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