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Abstract—This study presents a novel approach to detecting
the retina in optical coherence tomography (OCT) images using
Deep Q learning. The proposed method uses an agent to extract
contextual information from the input OCT to produce a tight-
bounding box around the retina in a step-wise fashion. The
detection task implements a decision process governed by a
reinforcement learning strategy, where the agent takes actions
and receives rewards according to their outcome. During the
localization process, the agent learns the optimal set of actions
to complete the detection task using a Q-network that estimates
the value of the expected return of an action at any given step.
Experiments on a test OCT dataset of 100 images showed that
the proposed method accurately located the retina with a mean
recall of 0.988 and a mean F1 score of 0.94.

Index Terms—reinforcement learning, object detection, deep
Q learning, optical coherence tomography

I. INTRODUCTION

The retinal thickness is a widely used diagnostic marker
of several eye-threatening conditions, including age-related
macular degeneration (AMD), retinal vein occlusion (RVO),
or diabetic macular edema (DME). Presently, the diagnosis of
retinal pathology relies on several imaging modalities from
which optic coherence tomography (OCT) stands out because
of its highly detailed images of the retina and underlying struc-
tures. This imaging modality allows examining deep structures
in the retina by acquiring cross-sectional images (B-scans) of
the back of the eye. The segmentation of OCT B-scans is
a fundamental step in measuring retinal thickness. Although
modern OCT scanners include image processing tools that pro-
vide reasonably accurate segmentation of the retinal extent in
healthy retinas [1], their performance degrades in the presence
of degenerative diseases such as macular edema and retinal
detachment [2], [3]. Retinal-pathology diagnosis relies heavily
on the accurate localization of the retinal boundaries. However,
OCT segmentation is labor-intensive, time-consuming and
prone to inter-observer variability. Therefore, there is an unmet
demand for automatic methods for localizing the retina in OCT
B-scans.

Due to the wide variability of the appearance of retinal
structures, several automatic methods approach the segmen-
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tation of OCT B-scans in a multi-stage fashion where the
first step is identifying a region of interest (ROI) around the
outermost layers of the retina [4]–[7]. This work focuses on
developing an automatic algorithm that accurately locates the
region that encloses the retinal boundaries. Specifically, the
algorithm aims to demark the space between the inner-limiting
membrane (ILM) and the retinal-pigmented epithelium (RPE).
To this end, we propose a deep learning approach that imple-
ments a contextual-interactive decision process controlled by
a deep reinforcement learning (DRL) strategy. The proposed
method builds on the Deep-Q Network (DQN) algorithm [8]
to learn a localization policy that determines the optimal se-
quence of actions to place a bounding box on top of the retina.
The localization policy is optimized through trial and error
using a localization agent, which acts upon the environment (a
given input OCT B-scan) and obtains rewards according to the
outcome of its actions. The agent follows a top-down search
strategy in which a bounding box is successively reshaped until
it closely surrounds the retina. The proposed method differs
significantly from state-of-the-art localization approaches in
that it does not enforce rigid search strategies such as sliding
windows or fixed search paths. Instead, it localizes the object
using a dynamic process, which progressively refines the focus
of the search to find the target ROI. The main contribution of
this work is the development of a novel localization method,
which is able to produce precise localization results based
on contextual information extracted dynamically from the
environment.

II. RELATED WORK

To date, region-based convolutional neural networks (R-
CNN) are the preferred approach to object detection and
localization. RCNN-based detection has made considerable
progress with the introduction of region proposal networks
(RPN) and the development of Fast R-CNN [9], and Faster-R-
CNN [10]. In the context of OCT image processing, R-CNNs
have been used for the detection of the choroid [11], subretinal
hemorrhage [12], vascular plaque [13], and DME [14]. Al-
though R-CNN-based methods have shown promising results,
their performance typically relies on a large number of object
region proposals, which render them computationally expen-
sive [15]. Moreover, like other supervised learning methods,
R-CNNs are prone to overfitting. In particular, when complex
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models are trained with little labeled data –a commonplace
in the medical domain [16], [17]. DRL offers an alternative
approach to learning where agents can learn with little or
any labeled data. In related work, a number of studies have
proposed DRL methods for object detection with promising
results [18]–[20]. In addition, DQNs have been applied to
detect anatomical landmarks [21], breast lesions [22], and
pancreas [16]. However, to the best of our knowledge, no
previous study has explored the application of DQN to the
detection of anatomical structures on OCT B-scans.
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Fig. 1. Overview of the proposed localization approach. The localization
agent takes contextual observations from the input OCT scan and transforms
a bounding box seeking to maximizes the localization results.

III. METHODS

The goal of the proposed algorithm is to produce a bounding
box for enclosing the neurosensory retina in the input OCT
B-scan. Considering the high variability of the location and
shape of the retina, we adopted a localization approach based
on the DQN algorithm.

A. Deep-Q Network

DQN is an extension of the classical reinforcement learning
algorithm Q-learning [23] that uses deep neural networks. Q-
learning sets an agent to interact with a dynamic environment
and obtain rewards according to the outcome of its actions.
At any given step, the agent performs an action a which is
determined by its policy π(a|s), where s is the current state
of the environment. The outcome of the action a is a new
state s

′
and a reward r

′
. The goal of the agent is to learn

an optimal policy so as to maximize the cumulative reward
over the course of interactions with the environment. Central
to the policy-optimization goal is the notion of a state-action
value function, termed the Q-value function. The Q-value
function of a policy π, Qπ(s, a), measures the expected return
obtained from taking action a at state s and then following the
optimal policy. In the Q-learning algorithm the optimal long-
term reward is estimated with the Bellman equation:

Q∗(s, a) = r + γmaxa′Q(s
′
, a

′
) (1)

where r is the immediate reward, maxa′Q(s
′
, a

′
) represents

the long-term reward and γ is the discount factor. In the DQN
algorithm the agent uses a deep neural network (Q-Network)
as a function approximator with a set of parameters θ to
estimate the Q(s, a|θ) value. During training the agent tune
the parameters of the Q-Network to maximize the cumulative
reward.

B. DQN-based Localization

In the proposed method, a DQN agent is tasked to produce a
tight-bounding box enclosing the retina. To that ned the agent
takes a series of actions that transform an initial bounding
box until it closely overlaps the ROI. At each step of the
localization process, the DQN agent obtains contextual infor-
mation from the environment and receives rewards according
to how close the outcome of the bounding-box transformation
matches the ROI. During the series of interactions with the
environment, the DQN agent train a Q-network to learn the
optimal localization policy. The detail of the parametrization
of the state s, the action set A, and the reward r is presented
below. Fig. 1 shows the overview of the proposed localization
approach. An example of a typical action sequence is shown
in Fig. 2.

1) Actions: As the retina occupies the entire width of
any given B-scan, it is unnecessary to transform the box
width but only its height. Accordingly, we restricted the
box transformations to the vertical direction and defined two
types of actions: 1) translation and 2) scaling, with two
actions each (up and down). The action set A included five
actions, four box transformations, and one trigger action to
terminate the localization process. Any transformation action
make a discrete change to the box representation, which is
determined by its vertical coordinates: b = [y1, y2]. The box
transformations are performed by adding or subtracting a fixed
amount α to the box coordinates according to the desired
effect. The trigger action terminates the action sequence on
the current search and indicates that a suitable bounding
box has been placed. Selecting the trigger action restarts the
box representation and initiates a new search. Besides the
trigger action, the localization process will also terminate
upon reaching a predefined step limit. This step limit is an
hyperparameter of the training process.

2) State: The state of the environment is fed to the Q-
network, which predicts the Q value of four transformation
actions with the current state. The action with the highest
Q value is selected to generate the next bounding box. The
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Fig. 2. Example of a typical localization sequence showing a series of transforming actions the DQN agent takes upon the bounding box. Green boxes
illustrate the successive transformations of the bounding box. Blue arrows indicate the box transformation at each step.

state representation consists of two pieces of information,
namely, the environment observation o and the action history
h. The environment observation is a feature vector of the
region visited by the agent. This feature vector is obtained by
cropping the visited area from the OCT B-scan and feeding
it to a convolutional neural network (CNN). At any given
step, we stored the agent’s experience e, which is a tuple
containing the current state s, the action taken a, the reward
r obtained as a result of the pair (s, a) and the next state
s
′
. The information stored in the agent experience allows the

agent to replay past actions. Using a replay memory has been
demonstrated to stabilize the search trajectory by making the
agent escape repetitive cycles [24].

3) Reward: The reward r is determined by the outcome
of the pair (s, a). The reward is granted according to the
overlap between the bounding box B and the ground-truth
G. To measure the overlap, we adopted the intersection-over-
union (IoU) ratio, which is expressed as:

IoU(B,G) =
B ∩G

B ∪G
(2)

The reward scheme is binary and it is determined according
to the improvement of the IoU from one state to the next as
follows:

r(s
′
, s) = sign(IoU(B

′
, G), IoU(B,G)) (3)

The trigger action does not grant a reward, and it is selected
whenever the IoU surpasses a predefined threshold τ .

IV. EXPERIMENTS

To evaluate the proposed method, we used OCT B-scan
images sourced from a publicly available dataset. We evaluated
the F1-score and the detection precision using k-fold cross-
validation. Details of the Q-network architecture and the
training process are presented below.

A. Dataset

The OCT B-scan images used in this study were sourced
from a publicly available dataset consisting of 10 OCT vol-
umes from 10 healthy patients [25]. The scans were acquired
with an SD-OCT Spectralis device (Heidelberg Engineering,
Heidelberg, Germany). All volumes contain 10 B-scans, 496
pixels in height, and variable width (543 pixels to 644 pixels).
The scans have lateral resolution 10-12 µm and axial resolution
3.87 µm. As a preprocessing step, we center-cropped the

images along the longest axis to make them square with a side
of 496 pixels. We applied a median filter with kernel size 3x3
pixels followed by a mean filter with kernel size 7x3 pixels
to remove speckle noise. To improve contrast, we applied a
power-law transformation [26] to the normalized pixel inten-
sity. The size of the kernels and the value of the power-law
transformation exponent were estimated empirically in prior
work [4] to preserve the continuity of the retinal boundaries.
Ground truths for training and testing were produced with the
annotations of the ILM and the RPE layers. Lastly, we split
the dataset into four disjointed partitions to perform cross-
validation with k = 4 folds. In each fold, we evaluated the F1
score, and the precision, and reported the mean and standard
deviation across four folds.

B. Q-network
The deep neural network used to estimate the Q value

consisted of two blocks consisting of one fully connected
layer and ReLu activation, followed by another fully connected
layer. The network input is the current environment state,
which comprises the feature vector of the region enclosed
by the current-bounding box and the action history. Fig. 3
shows a block diagram of the Q-network architecture. To
obtain the feature vector, we used an AlexNet [27] model
pre-trained on the ImageNet dataset. Using the pre-trained
model helped speeding up the learning process, as we only
updated the parameters of the Q-network. Alternatively, to
evaluate the impact of the transfer learning strategy, we
added the feature extractor block of the AlexNet model to
the Q-network and updated their weights from scratch. After
initializing the Q-network parameters at random, the agent
searches the environment for a suitable region to place the
bounding box. The localization policy followed a ϵ-greedy
strategy [28]. Accordingly, we set the agent to gradually drift
from exploration to exploitation with ϵ-greedy exploration
decay of 5x10−3. The discount factor γ was set to 0.9. The
replay memory size was 5x104 and the minibatch size 64. The
agent was trained for 500 steps per episode, so we allowed
20 actions per image on average. For the box transformation
parameter α, we chose a value of 1 since larger values made
it harder to place the box in preliminary trials. The threshold
τ of the trigger action was 0.8 in order to compel the agent
to find a tight-bounding box for the ROI.

The networks were trained on a Windows 10 PC (CPU:
Intel i7 8700K CPU @ 3.7 GHz - 6 cores, RAM: 32 GB)

1335



equipped with a GPU NVIDIA GeForce GTX 1080 Ti with
11 GB RAM.
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Fig. 3. Architecture of the Q-network

V. RESULTS AND ANALYSIS

As shown in Table I there was no significant difference
in performance between training the Q-network with and
without the feature extractor block. However, we observed
a faster convergence using the pre-trained AlexNet model.
This result coincides with prior work using pre-trained models
to obtain feature vectors for DQN-based object localization
[16], [29]. The ϵ-greedy and replay memory strategies adopted
during training were instrumental in stabilizing the learning
process as well as lowering the oscillation between consecutive
experience cycles. The training curve in Fig.4 was obtained
with replay memory. By contrast, the curve in Fig.5 shows
the training progress without replay memory. Even though
the formulation of the reinforcement learning introduces ran-
domness via the ϵ-greedy exploration strategy. We observed
that the trained models showed consistent performance with
a narrow standard deviation in 4-fold cross-validation results.
Localization errors were produced in OCT B-scans showing
a pronounced tilting (Fig. 6). We suspect that these errors
occurred due to the relative under-representation of this type
of image in the dataset, and should be addressed by increasing
the diversity of the dataset. The proposed method matches the
results of a Fast-RCNN model built with the same pre-trained
AlexNet model used as a feature extractor for the DQN. The R-
CNN was fine-tuned with the OCT B-scans for 30 epochs with
the stochastic gradient descent using a learning rate of 10−4

and momentum = 0.9. As shown in Table I the performance of
the proposed approach is comparable to that of a state-of-the-
art deep learning localization method. Thus, it can be reliably
used in OCT segmentation tasks to locate the region occupied
by the retina.

Fig. 4. Convergence curve of the training with replay memory

Fig. 5. Convergence curve of the training without replay memory

Fig. 6. Example of a localization error. Bounding box in red: ground truth,
bounding box in green: DQN output
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TABLE I
RESULTS OF THE PROPOSED METHOD AND COMPARATIVE OBJECT

DETECTION METHOD. MEAN(STD) VALUES COMPUTED ACROSS 4 FOLDS.

Model Recall Precision F1 score

Proposed DQN† 0.988(0.03) 0.911(0.12) 0.943(0.08)
Proposed DQN 0.995(0.01) 0.904(0.12) 0.942(0.08)
Fast-RCNN 0.980(0.02) 0.989(0.01) 0.985(0.02)
† pretrained AlexNet model used as feature extractor.

VI. CONCLUSIONS

This study proposes a novel method for locating the neu-
rosensory retina in OCT B-scans using deep Q learning. The
proposed approach addresses the need for automatic methods
to annotate OCT B-scans, which ordinarily is a labor-intensive
task. Results of the evaluation on a publicly available OCT
dataset showed that the proposed method reached competitive
performance on par with an RCNN model. The proposed
method achieved a mean F1 score of 0.988±0.03 and a mean
recall of 0.943±0.08 on the test OCT dataset. The proposed
method introduces an effective alternative to state-of-the-art
algorithms for the localization of diagnostic biomarkers in
retinal OCT B-scans. In future work, we hope to extend the
proposed method to other retinal pathology diagnosed with
OCT, such as epiretinal membrane, macular fluid, macular
holes, and drusen.
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