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Abstract— Gastric cancer is one of the most frequent causes 

of cancer-related deaths worldwide. Gastric intestinal 

metaplasia (IM) of the mucosa of the stomach has been found to 

increase the risk of gastric cancer and is considered as one of the 

precancerous lesions. Therefore, early detection of IM may have 

a valuable role in histopathological risk assessment regarding 

the possibility of progression to cancer. Accurate segmentation 

and analysis of gastric glands from the histological images plays 

an important role in the diagnostic confirmation of IM. Thus, in 

this paper, we propose a framework for segmentation of gastric 

glands and detection of IM. More specifically, we propose the 

GAGL-Net for the segmentation of glands. Then, based on two 

features of the extracted glands we classify the tissues into 

normal and IM cases. The results showed that the proposed 

gland segmentation approach achieves an F1 score equal to 

0.914. Furthermore, the proposed methodology shows great 

potential for the IM detection achieving an accuracy score equal 

to 96.6%. To evaluate the efficiency of the proposed 

methodology we used a publicly available dataset and we 

created the GAGL dataset consisting of 59 Whole Slide Images 

(WSI) including both IM and normal cases. 

Keywords— Gastric cancer, medical image segmentation, 

intestinal metaplasia detection. 

I. INTRODUCTION 

Gastric cancer is a major public health issue. As reported 
by the WHO in 2020 [1], it remains one of the most common 
cancers (sixth most frequent type) and it is the fourth leading 
cause of cancer-related deaths mainly due to its often-late 
stage of diagnosis [2]. The risk factors of gastric cancer 
include Helicobacter pylori infection, salt intake, smoking, 
alcohol, family history of gastric cancer, gastric atrophy and 
intestinal metaplasia (IM) [2], [3], [4]. In particular, several 
studies suggest that IM of the mucosa of the stomach is a 
major precursor lesion of gastric cancer [5], [6]. For this 
reason, the early and effective diagnosis of IM is a crucial step 
to prevent gastric cancer. In IM, the metaplastic glands replace 
the native gastric glands and Paneth cells, goblet cells and 
absorptive cells appear. Widely used diagnostic methods for 
IM include endoscopic and histological diagnosis. Endoscopic 
diagnosis of extensive IM is reliable, but there are difficulties 
in making the diagnosis of mild IM cases. Biopsy 
confirmation for staging suspected cases of IM remains the 
gold standard approach. To this end, based on the Sydney 
protocol [7], the features of IM are identified and are visually 
confirmed by histopathologists. 

However, the visual assessment of IM glands by 
histopathologists is a labour and time-consuming task [8], 
with a degree of inter-observer variability even with 
standardised classification systems [9]. Thus, automated 
precise segmentation and classification of glands from 
histological images could play an important role in glandular 
morphology analysis, which is a crucial criterion for IM 
effective detection and management.  This could be a labour 
and cost saving technology, with potential to improve 
diagnostic reliability.  Numerous methods have been proposed 

in literature for gland segmentation. However, to date, no 
generally applicable digital pathology approach has been 
proposed and applied for the segmentation of gastric glands 
and identification of either mild or moderate cases of intestinal 
metaplasia. Towards this end, in this paper, we propose a 
methodology for gastric glands segmentation and IM 
detection based on Hematoxylin and Eosin (H&E) -stained 
whole slide image (WSI). More specifically, this paper makes 
the following contributions: 

• We propose the GAGL-Net model consisting of two 
branches for the extraction of global and local multi-scale 
features and segmentation of gastric glands. 

• We introduce a digital pathology framework exploiting 
the automated gland segmentation for the early detection 
of IM cases.  

The rest of this paper is organized as follows: First, related 
works are discussed. Then, details of the proposed 
methodology are presented, followed by experimental results 
using the GAGL dataset. Finally, some conclusions are drawn 
and future extensions are discussed. 

II. RELATED WORKS 

The digital medical image segmentation and classification 
field receives growing attention and has become more and 
more popular [10]. Thus, various techniques and methods, 
based on either hand-crafted or deep learning features, have 
been developed for histopathological image segmentation and 
classification tasks. Hand-crafted developed methodologies 
use a low-level or mid-level set of features to represent an 
image or regions of this. More specifically, glands 
segmentation, based on identification and growing of 
candidate lumen regions [8], on different scales analysis [11] 
and on construction and quantification of object-glands, [12] 
has been utilized. In other approaches epithelial nuclei 
identification has been performed and used for gland 
segmentation [13].  

On the other hand, more sophisticated classification 
techniques methods such as deep-learning techniques [14] and 
higher-order dynamical systems [15] have been developed 
aiming to address histopathological image segmentation and 
classification problems by extracting high-level features and 
knowledge directly from the data. More specifically, Chen et 
al. [16] proposed a deep contour-aware network aiming to 
focus more on the boundaries’ segmentation among glands. 
This is based on a fully convolutional network consisting of 
two different branches and three weighted auxiliary classifiers 
aiming to enhance the discrimination capability and to 
strengthen the training optimization process. Xu, et al. [17] 
proposed a deep multichannel side supervision model 
combining foreground segmentation, edge detection and 
object detection channels, for instance segmentation in gland 
histology images. Furthermore, Graham et al., [18] used 
minimal information loss units incorporating the original 
down-sampled image into the residual unit aiming to retain 
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maximal information that is essential for segmentation. On the 
other hand, Yan, et al. [19] used a unified model and focused 
on the training of it through a shape-preserving loss function 
for both pixel-wise gland segmentation and boundary 
detection. More recently, a multi-scale fully convolutional 
network extracting different receptive field features was 
proposed [20]. In the latter, the authors used three-class 
classification and two branches in order to both achieve 
boundary segmentation and retain the global information. 

III. MATERIALS AND METHODS 

The framework of the proposed methodology for the 
gastric glands segmentation and classification of WSI into 
normal and IM cases is shown in Fig. 1. Initially, a WSI image 
is divided into blocks and fed into the GAGL-Net for the 
training of the gland segmentation model. Then, based on the 
estimated glands, two features of the segmented glands are 
extracted and an SVM classifier is used for the detection of 
intestinal metaplasia cases. 

 

Fig. 1. The proposed methodology. GAGL-Net model receives as input 
gastric WSI and it performs segmentation of gastric glands. Detection of IM 
glands is performed through the extraction of two features and the 
deployment of an SVM classifier. 

A. Dataset description 

To evaluate the efficiency of the proposed methodology 
we created a dataset consisting of 59 WSI (Fig. 2). More 
specifically, the dataset includes 14 normal and 45 IM images. 
Gastric tissues were collected at University College London 
Hospital NHS trust, with ethical approval (research ethics 
committee (REC) reference: 15/YH/0311, & 19/LO/0089) 
with informed consent taken for prospective tissue collection. 
The tissues underwent routine haematoxylin & eosin (H&E) 
staining. For the training of the GAGL-Net model we used 10 

annotated WSI while for the validation we used 12 annotated 
WSI (testing dataset). The rest of the WSI, which are 
unannotated with regards to glands, were used for the analysis 
of gastric biopsies. It is worth mentioning that, as our aim is 
to develop a methodology for the early detection and diagnosis 
of IM to prevent gastric cancer, in this dataset we included 
mild and moderate IM cases. 

   

   
Fig. 2. Sample gastric tissue images of the GAGL dataset. 

B. Gland segmentation 

Gland instance segmentation is a complex task that 
requires the extraction of meaningful global and local features. 
Thus, in the proposed method, similarly to previous 
classification approaches [21], [22], we combine two branches  
extracting different receptive field features and multi-level 
contextual features using digitized images of H&E stained 
gastric tissue slides. More specifically, the proposed GAGL-
Net model comprises a local module inspired by the DCAN 
[16] and a global module inspired by the ResNet-50 [23] 
enabling the exploitation of both local and global information. 
The GAGL-Net model includes a downsampling path and an 
upsampling path, and integrates a series of modifications 
aiming to achieve good performance and computation 
efficiency. In the local module the input image patches with 
size of 480×480×3 pass through a 3×3 conventional 
convolution layer while in the global module they pass 
through a 7×7 convolution layer. For the further utilisation of 
both contextual information and finer details in both modules 
we extract different receptive field features as shown in Fig. 
1. Thus, more low-level information is retained and multi-size 
gland segmentation is achieved. It is worth mentioning that in 
some malignant cases the previous developed models achieve 
lower segmentation scores on degenerated and elongated 
glands. This would be a drawback in the case of analysis 
glands and gastric pits of IM. Thus, the proposed model aims 
to increase the overall detection accuracy of glands in WSI by 
extracting features from the global module, while the local 
module increases the segmentation performance. Finally, the 
corresponding feature maps are up-sampled with 
deconvolutional layers and they are concatenated for pixel 
classification. The details of GAGL-Net are shown in Fig. 1. 
It should be noted that all the convolutional layers are 
followed by the batch normalization and ReLU activated 
function.  

Furthermore, for the enrichment of the training data of the 
GAGL network for the task of gastric gland segmentation we 
utilized the transfer learning technique. For transfer learning, 
a pre-trained neural network is fine-tuned to a target dataset. 
More specifically, we initialized the layers in the down-
sampling path with the pre-trained weights from the VGG-19 
and ResNet-50 models parameters and then the whole GAGL-
Net model was fine-tuned with training data prepared for this 
work. In addition, an augmentation method was utilized to 
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further increase the variability of the training dataset and to 
avoid overfitting of the network. In particular, we included 
translation, rotation and flipping transformations.  

For the training of our model, three-class labelled images 
(created on pre-processing step) were used in order to produce 
both the segmentation masks of gland objects and contours. 
The three classes represent the following categories: 
background, gland lumen, and gland edge. Additionally, a 
modified loss function was defined using a class weighting to 
balance the classes:  

 ���� = �2 − ∑ �	
	 log��	��	��  (1) 

where �	 , 
	  and �	  denote the weighting factors, the 
reference values and the predicted values at pixel p 
respectively, and N is the total number of pixels. L2 denotes 
the regularization term. Stochastic Gradient Descent (SGD) 
was used to optimize the loss function. The initial learn rate 
was defined as 0.005, the weight decay as 0.01 and the 
momentum as 0.9. The network was trained on a single 
NVIDIA GeForce RTX 3090 GPU with batch size 10 for 50 
epochs. For the testing, overlap-tile strategy was used for 
gland segmentation of WSI. Then, post-processing steps 
including filling holes and removing small areas are 
performed. 

C. Detection of intestinal metaplasia 

Having estimated the masks of gastric glands, we extract 
two features for the discrimination of WSI of gastric biopsies 
into normal and IM glands. More specifically, in order to 
model and to translate the pathologist’s knowledge into a 
universally reproducible set of mathematical values for the IM 
recognition we estimated the average number of glands and 
the average area of glands per WSI of gastric biopsies. For the 
detection of IM cases, the calculated features for each WSI are 
fed into an SVM classifier. More specifically, after the 
normalization of the data we used an SVM classifier 
implemented with the Gaussian kernel.   

IV. RESULTS AND DISCUSSION 

In this section, we present a detailed evaluation analysis of 
the proposed gastric gland segmentation as well as the 
classification of normal and IM cases. The goal of this 
experimental evaluation is threefold. Initially, we compared 
the efficiency of gland segmentation, using a widely used 
colon dataset and state of the art approaches. Secondly, we 
used the GAGL dataset in order to validate the proposed 
model for the identification of gastric glands on normal and 
IM cases. Finally, we applied our methodology to the WSI 
gastric dataset in order to classify and analyze the gastric WSI 
and determine whether significant associations could be found 
between the glandular features of normal and IM cases. 

For the evaluation of the proposed method, three 
evaluation metrics were employed, namely F1 score, object 
dice and object Hausdorrf. The F1 score is defined as: 

 �1 = �∙���������∙ ��!""
(���������$ ��!"") (2) 

where Precision is &'�/(&'� + &*�), Recall is &'�/(&'� +&*�), &'� is the number of true positive, &*� is the number 
of false positives and  &*� is the number of false negatives. 
The F1 score corresponds to detection accuracy while the 
object Dice is defined as follows: 

+,-.��/(0, 2) = �
� 3∑ (|2�|/ ∑ 52	5)+(0�6!7 , 2��8	���8��� ) +

∑ (50.5/�9.�� ∑ 50:5�9:�� )+(0. , 2.6!7);  (3) 

where +  is the Dice index of 0  and 2  and it is equal to +(0, 2) = 2(|0 ∩ 2)|)/(|0| ∪ |2|) . 0  is the ground truth 
image and 2  is the segmented image. The object Dice 
corresponds to segmentation performance. The object 
Hausdorrf is defined as: 

>,-.��/(0, 2) = �
� 3∑ (|2�|/ ∑ 52	5)?(0�6!7 , 2��8	���8��� ) +

∑ (50.5/�9.�� ∑ 50:5�9:�� )?(0. , 2.6!7);  (4) 

where > is the Hausdorrf distance of 0 and 2 and it is equal 
to: 

>(0, 2) = @AB C�DE7∈GHIJK∈L‖B − N‖ 
�DEK∈LHIJ7∈G‖B − N‖ P (5)

2DE  represents the supremum and HIJ  the infimum. The 
object Hausdorrf corresponds to shape similarity. Higher 
score values of F1 and object Dice as well as lower scores of 
object Hausdorrf indicate better performance. 

A. A comparison of state-of-the-art methods: GLAS dataset 

In this section, using a well-known dataset containing 
H&E-stained colorectal cancer tissue images we aim to 
present a comparison of the proposed methodology against a 
number of different gland segmentation approaches. More 
specifically, we used the Gland Segmentation (GlaS) 
challenge dataset used as part of MICCAI 2015 [8]. This 
dataset was acquired by a team of pathologists at the 
University Hospitals Coventry and Warwickshire in United 
Kingdom. It contains 165 histological images that were 
extracted from 16 H&E-stained WSI. The dataset is split into 
the training set including 85 images (37 benign and 48 
malignant), and the testing sets consisting of part A and part 
B which include 60 (33 benign and 27 malignant) and 20 
images (4 benign and 16 malignant) respectively. 

Table I. 

Performance 

comparison  

F1 Score Object Dice Object Hausdorff 

Part A Part B Part A Part B Part A Part B 

CVML [8] 0.652 0.541 0.644 0.654 155.43 176.24 

LIB [8] 0.777 0.306 0.781 0.617 112.71 190.45 

FCN-8 [24] 0.783 0.692 0.795 0.767 105.04 147.28 

SegNet [25] 0.858 0.753 0.864 0.807 62.62 118.51 

DeepLab v3 [26] 0.862 0.764 0.859 0.804 65.72 124.97 

Freidburg2 [8] 0.87 0.695 0.876 0.786 57.09 148.47 

Manivannan 
et al. [27] 

0.892 0.801 0.887 0.853 51.175 86.987 

Xu et al. [17] 0.893 0.843 0.908 0.833 44.13 116.82 

ExB3 [8] 0.896 0.719 0.886 0.765 57.36 159.87 

CUMedVision2 
[16] 

0.912 0.716 0.897 0.781 45.42 160.35 

MILD-Net [18] 0.914 0.844 0.913 0.836 41.54 105.89 

TCC-MSFCN [20] 0.914 0.850 0.913 0.858 39.84 93.24 

Yan et al. [19] 0.924 0.844 0.902 0.840 49.881 106.075 

GAGL-Net 0.918 0.855 0.915 0.854 41.48 98.96 

More specifically, in Table 1, we present the evaluation 
results of the GAGL-Net model in comparison to thirteen 
state-of-the-art methods. This analysis reveals that GAGL-Net 
is amongst the top three performing methods. More precisely, 
the proposed model towards gland segmentation achieves F1 
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score rates of 91.8% and 85.5% for part A and part B test sets 
respectively. The achieved F1 score for part A is the second 
best rate while for part B the proposed model achieves the top 
performance. Similarly, the achieved object Dice rates are 
0.915 and 0.858 for part A and part B respectively. These rates 
correspond to the top performance and to the second best score 
against the compared methods respectively. Moreover, the 
proposed model achieves object Hausdorff scores of 41.48 
and 98.96 corresponding to the third best performances for 
both part A and part B test sets. 

It is worth mentioning that the proposed GAGL-Net model 
introduces a global and a local branch extracting different 
receptive field features from each one. Thus, as depicted in 
Table I, our model offers an improved F1 Score for malignant 
cases as well as a higher score in segmentation performance 
of benign cases. In contrast, although some models [19], [20], 
[27] achieve better shape similarity, they achieve lower 
detection and segmentation rates that would lead to incorrect 
results regarding the estimation of the number and area of 
glands that are used for the detection of IM cases. Fig. 3 
illustrates qualitative results of the proposed model on the 
GlaS challenge dataset. It shows that the GAGL-Net model 
accurately identifies both benign and malignant glands. 
However, there is a limited number of cases where the lack of 
lumen (Fig. 3d) causes false negative results.  

(a) (b) (c) (d) 

Fig. 3. Gland segmentation results of GAGL-Net model on the GlaS 
challenge dataset in comparison with ground truth: Yellow color (True 
Positive), red color (False Positive), green color (False Negative). 

B. Gastric glands segmentation results: GAGL dataset 

Subsequently, in order to confirm that the performance of 
the proposed methodology remains robust in gastric tissues, 
we carried out a validation analysis using the GAGL dataset 
(Fig. 4). More specifically, we used 12 annotated WSI and the 
GAGL-Net model in order to perform segmentation of the 
gastric glands and the gastric pits.  

(a) (b) 

Fig. 4. Gland segmentation results of GAGL-Net model on two sample 
WSI of the GAGL dataset. 

The results show that the proposed gland segmentation 
approach achieves F1 score equal to 0.914 and object Dice 
score equal to 0.908. Moreover, the proposed model achieves 
object Hausdorff score equal to 44.12. Similarly to the GlaS 
dataset, results in the GAGL dataset (Fig. 4) show the great 
potential of the proposed model which is capable of 
identifying glands with high shape and size diversity. 
However, there is a limited number of small glands and gastric 
pits that are not accurately detected due to either the small size 
of the glands or image artefacts (Fig. 5). 

(a) (b) (c) (d) 
Fig. 5. Detailed gland segmentation results of GAGL-Net model on the 
GAGL dataset. 

C. Gastric biopsies analysis 

In this work, features of the segmented glands were used 
for the analysis of gastric biopsies. Initially, we estimated the 
number of glands for normal and IM cases (Fig. 6). More 
specifically, the average number of glands in normal cases is 
551.5 (median is equal to 390.1) and the average number of 
glands in IM cases is 302.1 (median is equal to 271.1).  

 

Fig. 6. Average number of gastric glands per WSI of gastric biopsies. 

 

Fig. 7. Average area of gastric glands per WSI of gastric biopsies. 

In additional analyses, we estimated the average area of 
glands for normal and IM cases (Fig. 7). For the normal cases 
we identified that the average area of glands in normal cases 
is 2137.6μm2 (median is equal to 2079.3) and the average 
number of glands in IM cases is 4113.2μm2 (median is equal 
to 3667.6). The aforementioned results validate the Sydney 
protocol and the fact that IM cases are usually associated with 
extensive atrophy carrying an increased risk of malignancy. 
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Moreover, we used the extracted features and an SVM 
classifier aiming to classify the gastric tissues into normal and 
IM cases. Our model achieves 96.6% accuracy score showing 
great potential for automated identification of mild and 
moderate IM cases. Finally, we internally validated the 
efficiency for IM identification by performing an ablation 
analysis. The individual use of the number and area of gastric 
glands achieve accuracy scores equal to 93.2% and 94.9% 
respectively.  

V. CONCLUSION 

Multiple risk factors and a multistep process have been 
associated with gastric carcinogenesis. Among these factors, 
gastric IM of the mucosa has been recognized as high-risk 
precancerous lesions for dysplasia and gastric cancer. Ιn this 
paper we present a methodology for the automated 
segmentation of gastric glands and the classification of gastric 
tissues into normal and IM cases. The proposed GAGL-Net 
model for gastric glands segmentation achieves F1 score equal 
to 0.914, object Dice score equal to 0.908 and object 
Hausdorff score equal to 44.12. Furthermore, for the 
classification of the gastric tissues we extracted two features 
and we used an SVM classifier achieving 96.6% accuracy 
score. The results suggest that the proposed methodology 
obtains promising performance on the GAGL dataset and IM 
detection. The analysis of gastric glands reflects the expected 
results based on the Sydney scoring system. This model could 
have further applications in automated histopathological 
diagnosis and classification and may represent a potential 
avenue for significant cost and labour saving in the 
histopathology clinical diagnostic pathway. However, 
limitations of this study include the lack of individual gland 
classification that will assist us to accurately grade each WSI. 
Thus, a future step would be to use artificial intelligence for 
both glands segmentation and grading of gastric biopsies in 
order for the proposed framework to be adopted on a 
widespread basis in routine histopathological practice.  
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