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Abstract—Conventional blood pressure monitors and sensors
have several limitations in terms of accuracy, measurement time,
comfort or safety. To address these limitations, we realized and
tested a surrogate-based contact-less blood pressure estimation
method which relies on a single remote photoplethysmogram
(rPPG) captured by camera. From this rPPG signal, we compute
120 features, and perform a sequential forward feature selection
to obtain the best subset of features. With a multilayer perceptron
model, we obtain a mean absolute error ± standard deviation
of MAE 5.50 ±4.52 mmHg for systolic pressure and 3.73 ±2.86
mmHg for diastolic pressure. In contrast to previous studies, our
model is trained and tested on a data set including normotensive,
pre-hypertensive and hypertensive values.

Index Terms—blood pressure, remote photoplethysmography,
feature selection, neural network

I. INTRODUCTION

Blood pressure is an important vital parameter and de-
viations from the normal range can cause serious health
issues or indicate changes in a patients health status. It is
commonly measured with a sphygmomanometer or in very
critical situations invasively with a catheter. However, cuff-
based devices allow only discrete measurements and are
uncomfortable for the patient. Invasive measurements on the
other hand involve a risk of infection and thrombosis and are
therefore not used for general blood pressure monitoring. To
overcome these limitations, recent studies investigated beat-to-
beat blood pressure estimation from surrogate parameters [1]–
[3] such as photoplethysmogram (PPG) and electrocardiogram
(ECG). Such approaches can be transferred to completely
contact-less blood pressure estimation methods. Contact-less
methods enable more hygienic, comfortable and beat-to-beat
measurements and could be employed not only in the hospital
and health care settings, but also as smartphone applications
encouraging more regular ambulatory measurements. In this
paper, we present an approach on blood pressure estimation
via camera which employs PPG signal feature extraction and
selection, and finally a multilayer perceptron (MLP) regres-
sion. In contrast to previous studies on camera-based blood
pressure measurement, our training and test data set includes
normotensive, pre-hypertensive and hypertensive pressure val-
ues and a feature selection is performed to increase overall
relevance of the input data.

II. RELATED WORK

In the last decade, new approaches on cuff-less surrogate-
based blood pressure measurement receive increased attention.
Most published methods are based on pulse wave velocity
(PWV) which can be obtained by measuring the temporal
delay of a pulse wave between two specified locations. One
possibility to measure this delay is the pulse arrival time
(PAT) calculated as the time difference from the r-peak of
the electrocardiogram (ECG), i.e. the contraction of the heart,
and the rising edge of the photoplethysmogram (PPG) [4],
[5]. Another common method is based on two PPG signals
at different distances from the heart to obtain the differential
pulse transit time (dPTT) [6]–[9]. Zhang et al. [5] compared
these two parameters against invasively measured blood pres-
sure. In their study, the regression based on PAT obtained an
RMSE value over twice as large as the one based on dPTT
and did not meet FDA blood pressure limits. They explain
this difference by the varying pre-ejection period which is
contained in the PAT but not in the PTT. However, also PTT-
based predictions have limitations. Jeong and Finkelstein [9]
observed a different slope of the regression curve for each
subject such that individual calibrations are required. Further,
the relative positional relationship of the two measurement
locations needs to be maintained.
Therefore, more recent approaches consider signal morphol-
ogy of the PPG in addition to the PAT value [2], [10], [11] or
PPG morphology only [1], [12]–[14]. Whereas former meth-
ods require ECG and thus body-worn devices, latter ones can
be applied on contact-less PPG signals. Few papers have been
published on these feature-based models for remote or camera-
based PPG (rPPG) [3], [15], [16]. Jain and Subramanyam [15]
extract their rPPG from the red RGB channel by stacking the
channel information of all frames and applying a principal
component analysis (PCA) to remove noise. Next, they extract
features from the best part of the signal. This includes mostly
time domain features and the dominant frequency. With a
polynomial kernel regression they obtain a MAE of 3.9 ±5.4
mmHg for systolic pressure (SBP) and 3.7 ±5.1 mmHg for
diastolic pressure (DBP) on normotensive subjects with DBP
between 60 and 90 mmHg and SBP between 95 and 130
mmHg only. Lou at al. [3] use a smart phone camera for the
signal acquisition and transform the 8-bit encoded images into
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Fig. 1. Pipeline for camera-based blood pressure estimation.

8 separate bit layers. For rPPG extraction, they isolate those
layers where the bits fluctuate along with continuous reference
blood pressure. From data of 1328 subjects, 155 signal features
were extracted including pulse amplitude, shape and frequency
features. Lou at al. [3] employ PCA for dimensionality reduc-
tion producing 30 eigenvectors which are used as input for a
multi-layer perceptron model. They obtained a ME of 0.4 ±7.3
mmHg for SBP and -0.2 ±6.0 mmHg for DBP. However, their
subjects were specifically selected with DBP only between 60
and 89 mmHg and SBP between 100 and 139 mmHg, too.
Further, a dimensionality reduction compresses all information
into fewer features, but does not differentiate between relevant
and irrelevant information. In contrast, we employ a feature
selection method to only include those features that contribute
most to blood pressure prediction.

III. PROPOSED METHOD

Figure 1 illustrates the pipeline of the proposed method. The
approach starts with an image processing part to extract the
remote PPG from videos. For this, face detection is performed
and skin pixels are extracted from the forehead. This is
followed by a signal processing part in which the PPG signal
is filtered and derivatives as well as the frequency spectrum are
computed. For the PPG signal and these representations of it,
120 different signal features are defined as input candidates
for the regression model. To obtain a subset of relevant
features for the prediction problem, sequential feature selection
is performed. Finally, we train a neural network for blood
pressure prediction.

A. Image Processing

The PPG signal is extracted from facial skin pixels. For the
detection of the face, we employ a Single Shot Detector (SSD)
[17]. Based on the resulting bounding box, the position and
size of the ROI is determined such that it is placed over the
forehead. After face detection in the first frame, tracking of
the corresponding area is performed in subsequent images to
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Fig. 2. The upper plot depicts the raw rPPG signal and the lower one shows
the filtered and inverted signal which is used for further processing.

reduce movement artefacts and processing time. The filter-
based Minimum Output Sum of Squared Error (MOSSE)
method [18] showed to be the most stable tracker for this
task with a stability of 99.9 % and no tracking failure in
our experimental setup. Hence, signal distortions from faulty
face tracking did not influence our results. Finally, the PPG
signal is extracted from the green channel of the ROI, since
for haemoglobin, the absorption of the light peaks in the green
spectrum. Cui et al. [19] observed a prominent maximum in
the reflectance pulsation spectrum around 575 nm during their
studies of in vivo reflectance of blood and skin tissue at various
wavelengths. Therefore, the signal is obtained as the mean
pixel intensity ĪG(t) of the green channel G of all n pixels
within the ROI over time t:

ĪG(t) =
1

n

∑
x∈ROI

IG,x(t) (1)

B. Signal Processing

The obtained raw rPPG signal contains a lot of noise and the
blood volume pulses are modulated by the respiratory signal
as shown in Figure 2. To reduce noise and level the signal,
we apply two low-pass FIR filters. The first one has a cut-
off frequency of 0.3 Hz, such that the respiration signal up
to 20 breaths per minute remains. This signal is subtracted
from the original signal and finally, the second filter with a
cut-off frequency of 6 Hz removes high-frequency noise while
preserving the PPG waveform.

C. Feature Extraction and Selection

We defined 120 features to describe the PPG signal. Time
domain features are extracted for each PPG cycle whereas
frequency domain features are computed for a signal segment
of 5 seconds. The cycle detection is based on the maxima po-
sitions of the first derivative which represent the steepest point
of the systolic up-slopes [13]. A sliding window which spans
one and a half average cycles ensures that only the largest
maximum values in the neighborhoods are kept and hence,
diastolic peaks or potential double peaks are not chosen. For
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TABLE I
FEATURE TYPES EXTRACTED FROM PPG SIGNAL

Feature type Description
Pulse width Pulse width for systolic, diastolic and whole cycle, and

ratios. Also, pulse width (systolic, diastolic and ratios) at
various heights between minimum and systolic peak.

Amplitudes Amplitudes of the PPG signal and of its first and second
derivative, as well as ratios of the amplitudes.

Area under curve Integral for systolic, diastolic and whole cycle, and
ratios of them.

FFT amplitudes Amplitudes in the signal’s frequency spectrum up to 4.6 Hz.
Max. power frequencies Frequencies with the highest spectral densities in

descending order.
External features Sex, height, weight, and age of the subject.

this, the average cycle length is obtained from the dominant
frequency in the Fourier-transformed signal segment. Finally,
the minimum before the chosen systolic up-slope is defined as
the beginning of a cycle and the maximum afterwards is the
systolic peak. The dicrotic notch is identified as last minimum
before the end of the cycle or, if no minimum is found
for inflection type dicrotic notches, as last maximum in the
first derivative, respectively. Only cycles with a dicrotic notch
detected and a length within 0.67 - 1.67 times the average
cycle length are considered for further processing in order to
remove corrupted pulses. The values are chosen empirically.
Table I gives an overview of extracted signal features. Time
domain features include width, amplitude and area under the
curve for systolic and diastolic cycles as well as ratios between
these values. Another group of features contains systolic and
diastolic widths at different heights of the pulse. From the
first and second derivative, we extracted amplitudes for the
first three extrema. Frequency domain features include the
maximum power frequencies and their amplitudes.
Since not all of these 120 features contain relevant information
for blood pressure prediction, a sequential forward feature
selection is performed. Only those features that can contribute
to prediction accuracy are selected as input for the regression
model. The numbers of chosen features lie between 15 and
20.

D. Regression Model

A Random Forest Regression (RFR) model and an MLP are
trained as single-output regressions for systolic and diastolic
blood pressure separately and as two-output architectures.
Hyper-parameter tuning is performed for the MLP to obtain
the best model. The best model is selected based on a 10-
fold cross-validation and finally tested on an independent test
set. For the DBP single-output MLP, we obtained a model of
16 inputs and two hidden layers with 500 and 50 neurons,
and for SBP, a model with 17 inputs and two hidden layers
of 100 and 1000 neurons performed best. As optimizer, we
chose stochastic gradient descent (SGD) and all layers have
ReLU activations.

IV. EXPERIMENTS

For training and validation of the method, we recorded
a total of 150 videos of five subjects. Each video has a
duration of 30 s at a sampling rate of 120 frames per second

and 352 x 198 pixels. An Allied Vision Manta G-201-30fps
camera was used with an exposure time of 5 ms. For the
videos, subjects were seated in front of a plain wall and
held their right hands next to their faces. The only light
source was a window facade providing natural illumination.
Before and after every recording, reference blood pressure
was measured using a sphygmomanometer boso medicus X
by BOSCH+SOHN GmbH. The sphygmomanometer was clin-
ically validated according to protocol by the European Society
of Hypertension (ESH) and exhibits a standard deviation (SD)
of ±3 mmHg. All subjects (two male, three female) were
healthy and normotensive, aged between 24 and 27 years and
weight between 54 to 85 kg. To obtain a wider range of
blood pressure values, subjects had to do physical exercise
(1 min plank or squats) before five of the measurements, and
concentrate on deep and slow breathing before the next five
measurements. Mori et al. [20] showed, that these breathing
exercises lower blood pressure immediately by an average of
6.4 mmHg for normotensives and 9.6 mmHg for hypertensives.
Finally, our dataset includes DBP values from 65 to 110
mmHg and SBP values from 95 to 180 mmHg. The recorded
videos are separated into 5-second sections with 1 second
overlap and blood pressure reference values are interpolated
accordingly. With all PPG cycles deleted which do not meet
the previously described criteria, we obtained an overall of
1088 data points.

V. RESULTS AND DISCUSSION

A. Results

In the sequential forward feature selection for DBP predic-
tion, the first features being selected are amplitudes of the
Fourier-transformed signal. Mainly, frequencies between 3.6
to 4.2 Hz are included, and later, frequencies between 0.8
to 1.4 Hz. The lower frequency range might represent the
heart rate and the overall PPG pulse shape while the higher
frequency range comprises details about dicrotic notch and
systolic peak morphology. These frequency features also show
a comparatively strong correlation with both DBP and SBP
which coincides with [3]. As a fourth feature, an amplitude
ratio of the PPG’s second derivative, i.e. acceleration of the
PPG signal, is added. Furthermore, the eighth to tenth most
dominant frequencies of the signal are considered valuable
for diastolic pressure prediction and finally, area and time
features of the original PPG signal are chosen, but hereof
mostly features representing ratios between the systolic and
diastolic cycle or between diastolic area and time. In com-
parison, systolic pressure prediction does not seem to benefit
much from derivative information. Instead, it mainly relies on
amplitudes in the frequency domain between 3.4 to 4.2 Hz
and lower frequencies from 1.2 to 1.6 Hz. In addition to the
eighth to tenth most dominant frequency, also the first and
second most dominant ones appear in the selection results.
These frequency peaks usually lie around 6 Hz and exhibit a
strong correlation with SBP, but not with DBP.

On the test set, the single-output MLP model for DBP
obtained a mean absolute error (MAE ±SD) of 4.04 ±3.79
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Fig. 3. Test data predictions of separate MLP regressions plotted against
ground truth. Diastolic blood pressure is represented by +, and systolic
pressure by x.

mmHg and an RMSE of 5.54 mmHg. The Pearson correlation
coefficient for diastolic pressure prediction is r = 0.44.
For single-output MLP SBP prediction, test results show an
MAE of 5.50 ±4.52 mmHg and an RMSE of 7.12 mmHg. The
Pearson correlation coefficient is r = 0.82. The MAE on test
data in the normotensive range (DBP from 60 to 90 mmHg and
SBP from 95 to 140 mmHg) is 3.32 ±2.63 mmHg and 4.62
±3.52 mmHg for diastolic and systolic pressure, respectively.
Figure 3 depicts the predictions of these models and corre-
sponding ground truth values for the test data. The two-output
MLP performs worse for SBP but DBP seems to benefit from
the additional backpropagated output information. This model
obtains an MAE of 3.73 ±2.86 mmHg and 7.44 ±5.28 mmHg
for diastolic and systolic pressure, respectively. However, the
Pearson correlation coefficient for DBP predictions remains
low with r = 0.47. The RFR models obtain higher prediction
errors than the MLPs, for single-output as well as for the joint
model as detailed in Table II.

B. Discussion

With the overall best results of an MAE of 5.50 ±4.52
mmHg for SBP and 3.73 ±2.86 mmHg for DBP on the whole
test set, our method is within the standard set by the US
Association for the Advancement of Medical Instrumentation
(AAMI) of a maximum mean error < 5 mmHg and standard
deviation < 8 mmHg [21] and obtains grade A for DBP and B
for SBP (see Table II) according to Criteria of British Society
of Hypertension (BSH) [22]. These are the two most widely
used protocols which are also employed by the ESH.
The experiments show that MLP performs better for the given
task than RFR, however, for both methods, DBP prediction
benefits from including SBP in the learning process of the
two-output models. Due to the larger range of SBP values,
inclusion of those might encourage a wider spreading of
DBP prediction values. Accordingly, the joint models limit the
performance of SBP prediction because of the smaller range
of DBP values.
In lack of publicly available data sets for the topic of contact-
less blood pressure estimation, we created our own data set. It
still contains few subjects, all young, Caucasian and healthy.

TABLE II
BLOOD PRESSURE ESTIMATION RESULTS (IN MMHG)

Separate MLP (single-output)
Systolic Pressure Diastolic Pressure

MAE±SDa 5.50±4.52 4.04±3.79
ME±SD -0.85±7.07 0.04±5.54
RMSEb 7.12 5.54
Pearson coeff. 0.82 0.44
BSHc Grade B A
Joint MLP (two-output)

Systolic Pressure Diastolic Pressure
MAE±SDa 7.44±5.28 3.73±2.86
ME±SD -0.55±9.11 -0.27±4.70
RMSEb 9.12 4.71
Pearson coeff. 0.66 0.47
BSHc Grade B A
Separate RFR (single-output)

Systolic Pressure Diastolic Pressure
MAE±SDa 6.00±5.62 4.68±3.99
ME±SD 0.35±8.22 -0.79±6.15
RMSEb 8.22 6.16
Pearson coeff. 0.77 0.26
BSHc Grade B A
Joint RFR (two-output)

Systolic Pressure Diastolic Pressure
MAE±SDa 7.68±6.16 4.36±3.42
ME±SD 0.79±9.81 0.32±5.53
RMSEb 9.84 5.53
Pearson coeff. 0.69 0.37
BSHc Grade B A
amean absolute error ± standard deviation, broot mean square error,
cBritish Society of Hypertension

More - and more diverse - data will be collected in the
future for improving the model and testing generalization
capabilities for unseen subjects. It is worth highlighting that
due to physical exercises, we obtained a larger range of blood
pressure values than other studies did [3], [15]. In the future,
it is desirable to have a public benchmark data set to enable
comparability of published methods. When removing test data
with blood pressure values outside the normotensive range,
test results improve significantly to 3.32 ±2.63 mmHg (DBP)
and 4.62 ±3.52 mmHg (SBP). This indicates a reduced fit of
the model for hypertensive values, which may be caused by
an underrepresentation of high pressure values in the data set
or by differing correlations of the higher pressure range with
the selected features. For normotensive DBP, we obtain better
prediction results than previous studies [3], [15]. However, the
corresponding Pearson coefficient still only reaches a value
of r = 0.47 raising the question about the possibility of
DBP prediction from rPPG waveforms with the amount of
detail captured by camera. More research is needed to evaluate
prediction capabilities. Further, the natural light in the study
room appeared to be a disadvantage for the employed rPPG
extraction method. When only considering the green channel
for rPPG extraction, its values not only depend on color, but
they are also very sensitive to illumination changes. Trans-
forming the images into color spaces where illumination is
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separated from color information might prevent such artefacts.
Another limitation of our data set are the reference values. A
linear interpolation might not represent the true development
of blood pressure, especially for videos after physical exer-
cise where blood pressure slowly normalizes within the 30
seconds of recording time. Also, it has to be noted that the
reference device exhibits a measurement standard deviation of
±3 mmHg.

VI. SUMMARY AND FUTURE WORK

We presented a camera-based method for contact-less blood
pressure estimation, and trained and tested the model on a data
set including normotensive, pre-hypertensive and hypertensive
pressure values. The obtained MAE of 5.50 ±4.52 mmHg for
SBP and 3.73 ±2.86 mmHg for DBP are within the AAMI
standard and obtain grade B and A, respectively. In the future,
we are going to further optimize rPPG extraction from video
by transforming the images into another color space where
color information can be separated from illumination values.
Also, the method needs to be validated on a larger and more
divers data set.
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