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Abstract—Elastic registration of deformed images is a vital
component of many computer vision tasks, especially when
considering medical image data. Deep learning techniques, par-
ticularly U-Nets, offer state-of-the-art performance, but do not
yet use the rich spatial information context available in natural
images. We propose an augmentation based on the recently
introduced attention mechanism to allow a U-Net to use spatial
image context. A dedicated convolutive attention scheme has
been developed by calculating local similarity scores of the
multidimensional inputs. Additionally, a dedicated composite
error function based on common image similarity measures is
introduced in order to further improve the registration results.
To evaluate our approach, we conducted several experiments on
an augmented real-world dataset containing cardiac cine MRI
scans. The comparison with state-of-the-art registration schemes
highlights the potential of our approach.

Index Terms—image registration, deep learning, attention,
local similarity score, U-Net, composite loss

I. INTRODUCTION

In many computer vision tasks, correctly aligning different
images is an important early step. This task is especially
demanding when considering arbitrary, elastic deformation and
not restricting the solution space to affine transformations.
While numeric algorithms based on convex optimisation exist,
they are often rather slow or very sensitive to the presence
of noise. These problems motivate research into alternative
registration approaches using deep learning. In recent years,
convolutional neural networks (CNNs) became popular in
research fields dealing with multidimensional data. These net-
works offer several advantages over fully connected networks,
namely the possibility of sharing learned weights across data
dimensions, leading to translation invariance. This inductive
bias enables strong feature extraction and generalisation on
natural images. In many applications, a multi scale approach to
extracting data information is highly desirable. Thus, the most
common variant of CNNs in computer vision tasks is currently
the so-called U-Net, which became the de-facto gold standard
in various computer vision disciplines, including image seg-
mentation [1] and object detection [2]. These networks consist
of a contractive encoding path and an expansive path which
formulates the output of the network. Besides extracting low-
level features, the contractive part condenses image inform-
ation while discarding superfluous details. In the expansive
pathway, the low-resolution feature maps are upsampled and
combined with spatial information from the contractive path
at every scale via so-called skip connections. However, since
spatial information is extracted through network depth, the

beginning stages of the network do not have access to much of
the spatial information from every image region. The recently
introduced concept of attention [3] already helped to revolu-
tionise various fields in deep learning. Originally invented
to overcome long gradient paths and the exploding/vanishing
gradients problem prevalent in recurrent networks for natural
language processing tasks, it was quickly adopted in many
different fields and often outperformed previous state-of-the-
art approaches. And, in the last months, attention mechanisms
are finding their way into deep learning architectures tackling
multidimensional problems. Modified transformer architec-
tures have been used for image classification (in e.g. [4]
and [5]), medical image segmentation (in e.g. [6] and [7])
or denoising [8]. However, these networks focus mainly on
channel-wise dependencies. While some image registration
networks based on the attention mechanism exist, they utilise
a similarity score based on tokenised discrete image patches
[9] or on whole feature maps [10], which might not be ideal
to capture spatial context.

In this work, we explore the viability of the insertion of
convolutive attention cells into the U-Net architecture to enable
usage of spatial context information from natural medical
images. We aim to keep most of the tried-and-true U-Net
architecture intact, but allow the network to access structural
image information on every stage by modifying its skip
connections with the aforementioned cell.

II. DATASET

We use the popular Automatic Cardiac Diagnosis Chal-
lenge (ACDC) [11] training dataset. It consists of cardiac
cine magnetic resonance imaging sequences from 100 clinical
examinations, each consisting of a time resolved 3D image
volume with a maximum image size of 428 × 512 and up
to 31 slices. The dataset was created to develop and evaluate
pathology prediction systems as well as segmentation methods
and thus contains sequences of healthy heart activity as well as
sequences from known pathologies. Furthermore, the volume
data for each measurement contains 3D label maps for both
end systole and end diastole created by medical experts.
The label maps show the position of myocardium and both
ventricles in the volume.

In this work, we focus on 2D image registration. By slicing
the 4D image data into 2D images and discarding unlabeled
images as well as corrupt data, we end up with a dataset of
772 image pairs. More images from the dataset could be used
in training, but we wanted to establish comparability to similar
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Figure 1: An overview of the task at hand.

deep learning approaches, which only used labeled slices. The
images were normalised for pixel values between 0 and 1
and rescaled to a common size of 112 x 112 using bi-cubic
interpolation.

III. METHODS

Given a pair of images Ir, Im ∈ N1 × N2 taken from a
motion sequence, image registration in general is the search
of a transformation field y : R2 → R2 which warps the moved
image Im to resemble the reference Ir. Thus, in a best case
scenario, the deformation yields Im(y) = Ir, where off-grid
values in Im(y) are interpolated using a suitable interpolation
function. We use a deep learning network to create y as a
response to an input image pair Ir, Im, so that an interpolated
image Iy = Im(y) is close to Ir. A convex loss function
is utilised to minimise the difference between Iy and Ir. As
no ground truth deformation exists or would necessarily be
generated by a classical registration scheme, our network is
trained solely on image data in a unsupervised fashion. Our
basic setup is schematically shown in Fig. 1.

A. Loss Functions

The proposed objective function of our network is a com-
posite loss function consisting of two commonly used differen-
tiable image quality metrics and a straight forward deformation
regulariser. We define it using the weighted sum

E(Ir, Iy, y) = λSψ(Ir, Iy) + λLℓ2(Ir, Iy) + λRR(y), (1)

where λS , λL, λR are positive scalar weightings. Using N =
N1 ·N2 we define the parts of E by

ψ(Ir, Iy) = 1 − SSIM(Ir, Iy), (2)

ℓ2(Ir, Iy) = 1
2

∑N−1

n=0
∥Ir − Iy∥2

2 and (3)

R(y) = 1
2

∑N−1

n=0
(∇1yn)2 + (∇2yn)2

. (4)

The Structural Similarity Index Measure (SSIM) [12] is a
popular image metric which captures subjective image quality.
It has been shown that a ’pure’ SSIM loss is unsuitable for
computer vision tasks, as CNNs trained on such a loss struggle
to correctly align image edges [13]. Therefore, we pair it with
a conventional ℓ2-loss from the difference between Ir and
Iy . Since our images contain large uniform patches (mostly
regions of low intensity outside the region of interest), we
have to impose regularisation on the deformation field created

by the network. We penalise abrupt change in the vector field
by defining the regulariser R(y) in (4) as the sum of the
squared spatial differences at every pixel using finite difference
operators ∇1, ∇2 for both spatial dimensions.

B. Model Architecture

Our entire network architecture is schematically shown in
Fig. 2. The basic network design can be understood as an
augmented U-Net. We use a three stage contractive part in
which we use a repeated concatenation of 2D convolution,
batch normalisation and rectified linear unit (the (Convolve-
Batchnorm-ReLu)2-cell, or CBR2-cell, pictured in Fig. 2)
for feature extraction. We use standard Max-Pooling-Layers
between levels of the U-Net, which reduce height and width
of feature maps by a factor 2. In the expansive network part,
feature map size is restored through consecutive transposed
convolution of stride size two.

We propose a new module which we call the Residual Self-
Attention cell (ReSAtt, shown schematically in Fig. 3) which
modifies each skip connection of conventional U-Nets. The
input to the attention cell is concatenated with a positional
encoding, for which we use a normalised Cartesian grid,
and then used to generate Key (K), Query (Q) and Value
(V ) tensors of size H × W × C through three CBR2 cells.
Following the core idea of attention mechanism, we aim to
generate an attention score as a similarity measure between
entries of K and Q. Where attention cells in e.g. Natural
Language Processing calculate this similarity on the features of
embedded tokenised words and use this similarity to establish
context between input sequence parts, we do the same on
small image regions. For this reason, we partition K and Q
into tensors of filter patches. Let Rr,k(·) be an operator that
extracts a neighborhood of size k×k×C centered around the
pixel r, we extract

qr = Rr,k(Q) (5)
vr = Rr,k(V ).

Sampling r on a Cartesian grid with step size u, we compose
the neighbourhood tensors Q̂ = [q0, q1, ...qF ] as well as V̂ =
[v0, v1, ...vF ] with both Q̂, V̂ of size F ×k×k×C. We create
a set of transposed filters V̂ T of size C × k × k × F through
permutation. Neighbourhood patch size k and step size u are
set to 5 and 3, respectively. With ⋆ denoting correlation, we
generate an attention score matrix A by

A = [a0, a1, ...aF ] (6)
af = K ⋆ qf , f ∈ {0, 1, F − 1} (7)

and, using the convolution operator ∗, the attention output B
of size H ×W × C with

B = [b0, b1, ...bC ] (8)

bc = softmax(A) ∗ V̂ T
c , c ∈ {0, 1, C − 1}. (9)

This can be seen as an extension of the scaled dot-product
attention in the ’conventional’ attention mechanism where
instead of a matrix product, we calculate similarities using
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Figure 2: The network architecture, schematic of the CBR2 cell, and legend.
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Figure 3: The residual attention cell. V is dynamically set to
match the input. is the positional encoding appended to the
input channels.

correlation and convolution. Using a convolutional layer with
a kernel size of one, we adapt the number of features to
the input. This way, we can keep the number of channels
inside each attention cell constant. Finally, we combine the
attention output with the input using a residual connection.
As the output ŷ ∈ N1 ×N2 × 2 of the network is considered
as the perturbation of the the identity grid x (with I(x) = I),
the dense vector field used for deformation is y = x + ŷ.
The registered image Iy is then created using y by bilinear
interpolation.

C. Data Augmentation

Image augmentation was used to compensate for our small
training set. In addition to randomly switching the order of
the input images Ir and Im, we employed standard image
augmentations consisting of random flipping and rotation as
well as random image cropping to between 80% and 100% of
the original image size. We also slightly deformed the input
images using low-pass filtered Gaussian noise [14]. All image
augmentation was done at run time and imposed virtually no
overhead.

IV. EXPERIMENTAL SETUP

A. Data, Training and Model Parameters

Our model was implemented in Tensorflow 2.4.1 using an
ADAM optimiser and a learning rate of 1e−5. We empirically
found values of λS = 1e6, λL = 5e2, and λR = 150
to yield the best registration results. In all experiments, we
trained using k-fold cross validation. We used a pseudorandom
split to partition the image data along the 100 available
sequences into 10 bins of roughly equal size. The bins were
then used in a ten-fold cross validation procedure to train
our architecture. This way, we used a roughly 9:1 split for
our training and validation procedure and every image pair
was represented in the validation set once. All networks were
trained with a minibatch size of 10 and for 700 epochs, even
though convergence was typically reached much sooner. In
each training epoch, every image pair in the training set was
augmented and shown to the network once.

B. Baseline Systems

We will compare registration results with a state-of-the-art
U-Net architecture of Hering et al. [15] trained on the same
dataset. Their goal was not only to optimise image registration,
but to minimise the error in label map alignment as well.
Comparison was not straight forward, as their original loss
function penalised misalignment of region maps, which we
did not involve in network training. We implemented their
network and trained with both their originally proposed loss
function and training parameters as well as our loss function
defined in (1). The data used for training was the same in all
networks, and we used the same data augmentation in all cases.
In the results, we denote the U-Net trained with the original
loss function as Unetorig, and the U-Net trained with our
loss function as Unetmod. We also will compare with a more
traditional diffeomorphic elastic image registration algorithm
(Diffeomorphic Demons [16]) and the unregistered case, in
which we set y = x.

C. Quality Measures

The region maps that were contained in the data set were
used to compute quality metrics for the evaluation of registra-
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Figure 4: Results for evaluation metrics for the unregistered case, Demons registration, our proposed network and both U-Nets
used for comparison. Median is shown as red line, the box marks 25th and 75th percentile, whiskers mark extremes of range.

tion performance. We used the Universal Image Quality Index
(UIQI) [17] as a metric for combined image similarity and
quality of the registered image. The UIQI captures changes
in image correlation, luminance, and contrast between Ir and
Iy . The one-hot encoded label map of Im was deformed
using the estimated y and compared to the label map of Ir.
We calculated the mean of the Dice coefficient for the maps
of every anatomical label. As we do not explicitly restrict
the output of our network to the space of diffeomorphisms,
we also monitor the folding that occurs during deformation.
We use the determinant of the Jacobian of the vector field,
which is used to measure change in volume for elements in
the image. Negativity of the Jacobian determinant for some
volume element would denote a change in orientation of this
volume element, causing an overlap in the deformed volume.
Therefore, using Iverson bracket notation, a suitable measure
for the admissibility of the deformation can be defined with
the Jacobian of the approximated deformation J(yn) with

δJ(y) = 1
N

∑N−1

n=0
[det (J(yn)) < 0]. (10)

This represents the mean occurence count of a negative
Jacobian determinant throughout the discrete vector flow field.
We approximated the spatial derivatives with a basic forward
difference across the spatial dimensions. In the following
section, we evaluate registration performance using UIQI,
SSIM and Dice Score. All three metrics are upper bounded
by one, with one being the optimal result.

V. RESULTS

After training our deep learning models in each of the
validation runs, we generated results by feeding each val-
idation data point through the network and recording the
metrics of its output. We combined results for all of the
10 validation runs, which yields representative results for
the whole dataset. The combined metrics for our network
and its two comparisons are shown in Fig. 4. As is visible
in the results, our architecture offers a Dice coefficient and
UIQI performance similar to a conventional diffeomorphic
elastic registration algorithm. Our architecture beats the others
based on SSIM, and the network proposed in [15] excels
in Dice coefficient performance. This was expected as their

Table I: Field Folding Results.

λR δJ(y) Dice UIQI SSIM
0.15 3.3e−2 (3e−4) 0.745 0.897 0.986
1.5 1.0e−2 (5e−5) 0.796 0.899 0.988
15 1.9e−3 (4e−6) 0.830 0.892 0.985
150 3.2e−6 (8e−10) 0.803 0.866 0.972

1500 0 (0) 0.678 0.842 0.957

loss function is designed to minimise normed label difference.
However, when comparing metrics between Unetmod and our
network, it becomes apparent that our architecture achieves
significantly better median and metric spread on SSIM and
UIQI metrics. A single image pair from a validation set
including the deformation field approximated by the network
is shown in Fig. 5. Anatomical structures are subjectively
well registered in Iy , while the registration was not visibly
perturbed by image noise. In our architecture, inference of a
registration field took around 0.15s per image pair using a
NVIDIA Geforce RTX 2080 GPU.

A. Model Parameters and Vector Field Folding

As mentioned, our network is not designed to necessarily
generate diffeomorphic deformation fields. Instead, we opted
to avoid local folding by penalising the deformation gradient.
Varying the weighting term λR shows the influence of the
regularisation on the invertibility of the created transform and
the registration quality. The results are shown in Table I, in
which we present the mean value of δJ(y) (as its median
is 0 everywhere) and its variance in parentheses for the
whole validation dataset as well as the median of the other
performance metrics. In these experiments, the other parts
of the loss function were kept the same as in Section IV-A.
Smaller values of λR result in divergence during training. As
expected, a decrease in λR caused an increase in occurrences
of vector field folding, but also an increase in image quality
(measured with SSIM and UIQI) as well as Dice coefficient.
With minimal regularisation strength, we observe a decrease in
Dice coefficient score, which is caused by heavy deformations
as a response to image noise. However, this did not cause a
subjective degradation in image quality. We note that even
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Figure 5: A sample of the registration, showing reference image and deformed image before and after deformation. Also shown
is the intensity of deformation in every pixel in the shown image region. Image is zoomed in to only show cardiac region.

for small values of λR, the occurrence of folding all but
disappears. With the chosen regularisation of λR = 150, we
detect 31 occurrences of folding across the whole data set,
which we deem acceptable. Varying λS and λD by an order of
magnitude did not negatively affect the registration outcome,
and mostly changed the rate of convergence during training.

VI. DISCUSSION

We have presented a deep learning convolutive attention
module for the utilisation of spatial information embedded in
medical images. The efficacy of the method was evaluated
using a data set of image slices from cardiac cine MRI
scans. The rather small size of the data set was alleviated
by use of strong data augmentation techniques, though further
experiments could benefit from using larger data sets. We used
common image metrics for unsupervised training and evalu-
ation of image registration performance. We showed that our
augmented network architecture has advantages in registered
image quality in comparison to other machine learning based
registration algorithms. Our architecture achieved better results
on metrics capturing subjective image qualities in comparison
with unaugmented U-Nets trained on the same loss function.
Even though the output from the architecture was not explicitly
restricted to the space of diffeomorphisms, we could show that
with a suitable choice of regularisation, the created vector field
exhibits no local folding. However, explicitly formulating the
vector field as a diffeomorphism might be a potential avenue
for improvement.
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