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Abstract––Pathologies of the cerebral cortex often 

manifest at resolutions outside of the scope of conventional 

magnetic resonance imaging (MRI). Two different pathways 

aiming to overcome this limitation have emerged in recent 

years. One is focused on the direct imaging of the cortical 

layers achieved by increasing the MRI spatial resolution. The 

other approach relies on low-resolution images acquired at 3 

T and represents the cortical layers in the domain of T1 spin-

lattice relaxation. In this work, we follow the T1-mapping-

based approach and explore two possible methods to achieve 

the representation of cortical layers: (1) modeling using a 

multi-exponential model, and (2) inverse Laplace 

transformation (ILT). Several regions of interest (ROI) across 

the cerebral cortex were measured and later used to create the 

ground-truth dataset. Using this data, the performance of the 

two models was evaluated. The ILT method proved superior 

to the multi-exponential model, yielding separation of all 

components with an average estimation error of 2.52 %. This 

method may enrich the low-resolution imaging framework by 

providing a more precise estimation of the spin-lattice 

spectrum.   
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I. INTRODUCTION 

The separation of cortical layers in vivo is one of the 
major challenges in the field of neuroimaging. The laminar 
structure of the cerebral cortex carries vital information 
regarding the development and pathology of the brain. 
Malformations within the layers of the cortex can lead to 
several disorders. Due to the form of cortical layers, their 
sub-millimeter thickness, and uneven distribution within the 
cortex, their visualization using magnetic resonance 
imaging (MRI) still faces many obstacles. Several 
experimental works showed possible approaches in 
overcoming these limitations [1]–[6], resulting in the 
delineation of structures resembling cortical layers. These 
works used a multitude of methods, encompassing several 
MRI sequences such as magnetization-prepared fluid-
attenuated inversion recovery sequence (FLAIR) [1], 
modified magnetization-prepared rapid acquisition 
gradient-echo (MPRAGE) sequence [2], [3], magnetization-
prepared sequences of two rapid acquisition gradient-echoes 
(MP2RAGE) [4], and MP2RAGE in combination with 
multi-echo gradient-recalled echo (ME-GRE) sequence [5], 
[6]. This was facilitated in all cases by the usage of MRI at 
very high field strengths of 7 T. While leading to higher 
spatial resolutions, the highest field strengths also present 

different challenges of their own, such as larger distortions 
caused by the magnetic susceptibility artifact [7]. 

 An alternative approach, using images with a lower 
resolution, has also emerged in the relevant literature [8]–
[10]. This method relies on the acquisition of multiple 
images at lower resolutions and lower field strengths of 3 T. 
The cortical layers are then reconstructed from the images 
in the domain of T1 spin-lattice relaxation. The delineation 
of cortical layers, made possible with this MRI sequence, is 
based on the differences in their myelination, which is 
reflected in their respective T1 relaxation. Estimation of 
these relaxation parameters is achieved via mathematical 
modeling of intra-voxel cortical composition [9]. The 
resulting T1 maps serve as the basis for the subsequent 
visualization pipeline, which projects the cortical layers 
onto the anatomical image using classification [10].  

As stated previously, an important step of the low-
resolution imaging approach is representing cortical layers 
in the spin-lattice domain. Given the form of the T1 
relaxation, this can be viewed as an exponential analysis 
problem. The exponential analysis is the numerical analysis 
of functions resulting from experimental measurements of 
phenomena exhibiting exponential decay [11]. The 
exponential function can be defined as: 

 𝑓(𝑡) = 𝐴𝑒−
𝑡

𝜏 + 𝐵  () 

where A is the decay amplitude, B is the decay offset, 
and τ is the decay time constant. The goal of the exponential 
analysis is to estimate the amplitude and the time constant. 
If the measured data are assumed to originate from multiple 
exponentially decaying sources, the resulting signal can be 
viewed as a sum of exponential functions – each with a 
distinct time constant. The estimation of the parameters of 
these exponential functions is referred to as multi-
exponential analysis.   

In this work, we explore two possible methods of 
separating the cortical layers from low-resolution MRI 
images using multi-exponential analysis. These are the 
multi-exponential model and inverse Laplace transform 
(ILT). We assess the practicability of each method using 
datasets composed of different regions of interest (ROI), 
measured with an experimental low-resolution MRI 
sequence [9], and with ground-truth values of spin-lattice 
relaxation. 
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II. MATERIALS AND METHODS 

A. Data 

Data were measured using a modified echo-planar 
imaging (EPI) sequence, with the following parameters: 
TR/TE = 1200/39 ms, 105 inversion times (TI) from the 
interval of 50 ms to 3000 ms, with the resolution of 3×3×3 
mm3. The size of the image obtained from this sequence was 
64×64×42 voxels. The sequence was used to acquire a series 
of 105 images of four different anatomical ROIs. Three 
ROIs consisted of cortical gray matter (GM) and one of the 
cerebrospinal fluid (CSF). Voxels within the individual 
ROIs were averaged into four distinct ROI signals (see Fig. 
1), representing the T1 decay of the underlining tissue. 

 

Fig. 1. The signal from measured regions of interest. The value of 

magnetization M (proportional ot the voxel intesity) changes depednig on 

the inversion time TI. 

The last data point in each ROI was removed due to the 
loss of signal. Each of the ROI signals was fitted using a 
standard method for T1 mapping [12] to estimate the mean 
T1 relaxation time and mean magnetization M0 within the 
signal. Following this, three combined signals were created 
by cumulatively adding the ROI signals together (see Fig. 
2). This resulted in three datasets consisting of two, three, 
and four components, with ground-truth values of 
parameters T1 and M0. 

 

Fig. 2. The signal from combined regions of interest: a) two averaged 

components, b) three averaged components, c) four averaged components. 

B. Multi-exponential modeling method 

A multi-exponential model with a fixed number of 
components was used at first to separate the individual 
relaxation components: 

 𝑀(𝑇𝐼𝑖) = ∑ 𝑀0𝑗
𝐽
𝑗=1 (1 − 2𝑒

−
𝑇𝐼𝑖
𝑇1𝑗) () 

where the magnetization for the i-th inversion recovery 
time 𝑀(𝑇𝐼𝑖)  is equal to the sum of individual 
magnetizations of the assumed components, 𝑀0𝑗  is the 

magnetization at 𝑇𝐼 = 0 𝑚𝑠 for the j-th component and 𝑇1𝑗 

is the T1 relaxation time for the j-th component, and J 
denotes the number of components.  

The model parameters are estimated by a nonlinear 
least-squares method. The least-square objective function is 
minimized using a modified trust-region algorithm. Trust-
region algorithms approximate the objective function within 
an area of the search space, by finding a solution to the so-
called trust-region sub-problem [13]. In each iteration, the 
algorithm builds a model of the objective function and 
optimizes it within the given trust-region. The trust-region 
is then modified based on the quality of the approximation 
provided by the model, increasing if sufficient and 
decreasing otherwise. We have modified this algorithm by 
repeatedly initializing the optimization procedure from 
multiple randomly chosen starting points [14]. Prior 
knowledge of the number of components within the 
composite signal was assumed. 

C. Inverse Laplace transform method 

The second method estimates the individual relaxation 
times using the inverse Laplace transformation. This term is 
used for a multitude of different methods [15]. In our work, 
we define the inverse Laplace transform as a solution to the 
Laplace integral equation, which in the context of our 
modeling approach takes the form: 

 𝑀(𝑇𝐼) = ∫ 𝑔(𝑇1)(1 − 2𝑒
−

TI

𝑇1)𝑑𝑇1
∞

0
 () 

where 𝑔(𝑇1)  is a spectral function, representing the 
density of the distribution of all possible 𝑇1 relaxation times. 
The solution 𝑔(𝑇1) can be obtained by taking the inverse 
Laplace transform of (2). In practice, this is not feasible to 
achieve [11], instead (3) is linearized, giving: 

 𝑀(𝑇𝐼𝑖) = ∑ 𝑔(𝑇1𝑗)(1 − 2𝑒
−

TI𝑖
𝑇1j) + 𝑒𝑖𝑗  () 

where 𝑖 ∈ {1, ⋯ , 𝑁}  is the number of measured 
inversion times, 𝑗 ∈ {1, ⋯ , 𝐽} is the number of possible T1 
relaxation times and 𝑒𝑖 is the experimental error. Equations 
(4) and (2) may seem similar, but they differ in the number 
of possible values of T1 which can theoretically be 
estimated. In the case of (2), the number of possible T1 
values is equal to the number of assumed components, while 
in the case of (4), the number of possible T1 values spans the 
interval of all candidate values for T1. The solution to (4) is 
found using the following expression: 

 𝑔 = arg 𝑚𝑖𝑛𝑔≥0
1

2
|𝐴 ∙ 𝑔 − 𝑀|2 () 

where 𝐴𝑖𝑗 = 1 − 2𝑒
−

TI𝑖
𝑇1j  is the transformation kernel 

and 𝑀 = (𝑀(𝑇𝐼1), 𝑀(𝑇𝐼2), ⋯ 𝑀(𝑇𝐼𝑁)) . Equation (5) is 

minimized using the nonnegative least squares algorithm 
[16]. 
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III. RESULTS 

The resulting T1 spectra obtained by the ILT are 
presented in Fig. 3. 

 
Fig. 3. T1 spectra resulting from inverse Laplace transform. 

Fig. 3 clearly demonstrates that the T1 spectra contain 
more peaks than the individual components of combined 
ROIs. To compare the results with the ground truth, spectra 
were thresholded at the 60 % quantile and then iteratively 
binned. The number of bins was equal to the number of 
expected components. Each given peak was kept within its 
assigned component bin across all composite ROI if a 
similar peak manifested multiple times. The T1 values in 
each bin were averaged, giving the final T1 estimate for the 
given component. In case of the multi-exponential model, 
the estimates of M0 and T1 were output directly from the 
optimization routine. The resulting estimates of the 
parameters T1 and M0 are presented in Tables 1–3. Each 
table contains the absolute estimated values and relative 
errors achieved with the modified trust-region algorithm, 
ILT, and the ground-truth estimate.  

TABLE I.  ESTIMATED COEFFICIENTS FOR THE TWO-COMPONENT 

SIGNAL. 

ID Ground-truth Modified trust-

region algorithm 

ILT 

T1 M0 T1 

abs/erra 

M0 

abs/err 

T1  

abs/err 

CSF 728.90 910.02 910.02 / 

0.31 

907.17 / 

1.05 

730.00 / 

0.15 

GM1 3115.00 2605.50 2605.50 / 

1.14 

2576.10 / 

2.98 

3240.00 / 

4.01 

a. abs-absolute value, err-relative error in %. 

 

The multi-exponential model was able to distinguish all 
components that actually formed the combined ROI signal. 
The mean relative error of the T1 estimates was 2.01 %, and 
the mean relative error of the M0 was 0.73 %. The ILT 
method was able to distinguish all components with a mean 
T1 relative error of 2.08 %. 

TABLE II.  ESTIMATED COEFFICIENTS FOR THE THREE-OMPONENT 

SIGNAL. 

ID Ground-truth Modified trust-

region algorithm 

ILT 

T1 M0 T1 

abs/errb 

M0 

abs/err 

T1 

abs/err 

CSF 728.90 910.02 202.07 / 

260.71 

222.88 / 

308.30 

730.00 / 

0.15 

GM1 3115.00 2605.50 2990.20 / 
8.37 

2542.50 / 
2.48  

3030.00 / 
2.73 

GM2 886.60 1033.10 818.12 / 

8.37 

1754.80 / 

41.13 

915.00 / 

0.91 

b. abs-absolute value, err-relative error in %. 

The multi-exponential model was able to distinguish 
two components occurring in the combined ROI signal. The 
mean relative error of the T1 estimates was 6.27 %, and the 
mean relative error of the M0 was 21.80 %. The ILT method 
was able to distinguish all components with a mean T1 
relative error of 1.26 %. 

TABLE III.  ESTIMATED COEFFICIENTS FOR THE FOUR-COMPONENT 

SIGNAL. 

ID Ground-truth Modified trust-

region algorithm 

ILT 

T1 M0 T1 

abs/errc 

M0 

abs/err 

T1 

abs/err 

CSF 728.90 910.02 190.28 / 

283.06 

256.65 / 

254.58 

730.00 / 

0.15 

GM1 3115.00 2605.50 3002.4 / 
3.75 

2463.30 / 
5.77 

3123.30 / 
0.27 

GM2 886.60 1033.10 786.35 / 

12.75 

1739.60 / 

4061 

925.00 / 

1.23 

GM3 972.00 1112.70 1086.30 / 
10.52 

1189.70 / 
6.47 

1120.00 / 
15.23 

c. abs-absolute value, err-relative error in %. 

 

The multi-exponential model was able to distinguish 
three components present within the combined ROI signal. 
The mean relative error of the T1 estimates was 9.00 %, and 
the mean relative error of the M0 was 17.62 %. The ILT 
method was able to distinguish all components with a mean 
T1 relative error of 4.22 %. 

IV. DISCUSSION 

The task of fitting a sum of exponential functions 
represents a well-known ill-conditioned problem [11], 
meaning that multiple solutions within the desired accuracy 
exist. To ideally separate the exponentially decaying 
components, their time constants should be logarithmically 
spaced, and their distance should be increasing with the 
level of noise. The number of assumed components forms 
another limitation. While separating two components is 
generally achievable, separation of three and more 
components is more difficult [11]. These limitations 
manifest sharply in the presented results obtained using the 
multi-exponential model. The model was able to separate 
the two-component signal with an average error of 1.37 %. 
That was not the case with the three and four-component 
signals, where the average relative error of T1 increased to 
7.64 % and a single component remained undetermined 
(relative error of several hundred percent). The method was 
able to estimate the parameter T1 more precisely (average 
error of 5.76 %) than the parameter M0 (average error of 
13.38 %). 
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More precise results were obtained using the ILT 
method, with the average relative error of 2.52 % in T1 
estimation. The ILT method was also able to separate all 
components in all signals. It should be noted that the direct 
ILT output is a spectrum of T1 values, unlike in the case of 
the multi-exponential method. Therefore, the processing of 
this spectrum into the aggregate T1 values plays a crucial 
role in the reliability of the component estimation and was 
aided with the prior knowledge of their number. The 
estimation of the parameter M0 could not be compared 
directly. While the coefficient can be estimated, it represents 
only the relative proportion of a given component within the 
signal. Comparing the two methods using only the raw 
relative error numbers, the ILT method seems superior. It is 
capable of precise estimation, regardless of the number of 
components within the signal. Additionally, no prior 
assumption of their number is required. 

V. CONCLUSIONS 

Two different methods for the acquisition of the spin-
lattice relaxation spectrum were compared. The ILT method 
has proven superior to the multi-exponential model, both in 
estimating the signal composition and the precision. The 
method requires no prior knowledge of the number of 
components or their distribution. The ILT method could 
improve the low-resolution imaging of cortical lamina by 
better estimating its T1 composition. 
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