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Abstract— This work addresses the problem of solving a linear 

inverse problem. Conventional inversion techniques are model 

based (transductive). The advent of deep learning led the way for 

data-driven (inductive) inversion techniques. The main issue with 

inductive inversion is that unless the unseen signal (to be inverted) 

is similar to the training data, the learnt model fails to generalize 

rendering poor inversion results. A recent study on deep 

dictionary learning has shown how it can combine the best of both 

worlds – deep learning with transductive inversion. In this work, 

we show how the analysis counterpart of dictionary learning, 

called transform learning, can be extended deeper for 

transductive inversion. Results on dynamic MRI reconstruction, 

show that the proposed technique improves over the state-of-the-

art. 

Keywords— inverse problem, compressed sensing, deep 

learning, MRI, reconstruction  

I. INTRODUCTION (HEADING 1) 

Our interest lies in solving a noisy linear inverse problem. 
Many problems in machine learning and signal processing such 
as unmixing, regression, denoising, reconstruction, source 
separation, etc. fall under this category. Mathematically it is 
represented as follows,   

2,  (0, )y Ax N  = +     (1) 

where y is the observation, A is the linear system of equations, x 
is the unknown and η is the noise. Problems differ from one 
another in the nature of A. For example, in denoising, A is an 
identity, for regression, it is the system of explanatory variables 
and for magnetic resonance imaging (MRI) reconstruction, it is 
a Fourier operator.  

The most straightforward approach to solving (1) is to find a 
minimum variance solution. For the commonly assumed 
Gaussian noise, this turns out to be the pseudo-inverse. For other 
types of noise, the solution is more sophisticated. In this work, 
we will assume that the noise is Gaussian.  

Later techniques, instead of just solving for the minimum 
variance solution, assumed some prior. The simplest prior can 

 
1 : T TOrthogonal I  = =    

2 : T TTight frame I−   =    

be the minimum energy solution, which is effectively Tikhonov 
regularization. Recent approaches, developed over the past one-
and-a-half decade, assumed the solution to be sparse. This led to 
regularization via the l1-norm leading to the following,  

2

2 1
arg min

x

y Ax x− +     (2) 

Perhaps the most famous applications of sparse recovery in 
machine learning are LASSO regression [1, 2]. In signal 
processing, the field of compressed sensing (CS) [3] started 
from the idea of sparse recovery.  

In this work, we are mainly interested in signal processing 
aspects of linear inverse problems. CS based techniques became 
popular in this domain because a large class of signals can be 
represented sparsely in some fixed transform domain (wavelet, 
DCT, Gabor, etc.). Many such transforms are either orthogonal1 
or tight-framed2. This allows expressing the signal via analysis-
synthesis3 equations. Therefore signal recovery could be framed 
as a sparse synthesis prior problem, 

2

12
arg min Ty A



  −  +    (3) 

In this formulation, the transform coefficients are solved; the 
signal is recovered by applying the synthesis equation on the 
recovered coefficients. 

The majority of studies in CS are based on the synthesis prior 
formulation. It is theoretically well understood and there are 
many efficient algorithms to solve it. However, in practice the 
synthesis prior is restrictive; it can accommodate only 
transforms that follow the analysis-synthesis equations. This 
precludes many powerful priors such as total variation in image 
processing tasks. Therefore, in practice, the co-sparse analysis 
prior formulation [4] is known to yield better results. This is 
expressed in the following fashion. 

2

2 1
arg min

x

y Ax x− +     (4) 

3 
:

: T

analysis x

synthesis x





 =

 =
  

1357ISBN: 978-1-6654-6798-8 EUSIPCO 2022



In layman's terms the quality of CS reconstruction is directly 
proportional to the sparsity of the signal in the transform 
domain; the sparser the representation better is the recovery. The 
fixed transforms used in CS are mathematically well defined and 
generic by nature; they can sparsely represent a wide class of 
signals. It is well known in signal processing that, to get the best 
(sparsest) representation, the basis needs to be adaptively 
learned from the signal itself. This is the reason, dictionary 
learning based inversion techniques [5, 6] eventually improved 
over CS. The formulation for dictionary learning based 
inversion is expressed as follows, 

2 2

2 2 0, ,
min  s.t.  

 
− + −  

 
 i i i

x D Z
i

y Ax Px Dz z  (5) 

The first term is the standard data fidelity term assuming 
Gaussian noise. The term within the brackets corresponds to 
dictionary learning. Given the patches of the signal Pix, a 
dictionary D is learnt such that the corresponding coefficients zi 
is sparse. Instead of the standard CS sparsity prior in a fixed 
transform, (5) learns both the basis (D) and the coefficients (zi) 
adaptively from the signal.  

In a very recent work [7], it was shown that instead of 
learning only a single layer of a dictionary, better results can be 
obtained if multiple layers are learnt. The following formulation 
is given in [7], 

( )( )( )
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Here D1, D2, D3 are three layers of dictionaries. The non-
linear activation function φ prevents the collapsing of the three 
dictionaries into a single one. Note that instead of the l0-norm, 
deep dictionary learning employs the l1-norm to promote 
sparsity.  

Dictionary learning is a synthesis formulation; it learns a 
basis (dictionary) from the signals such that one can generate the 
signals from the learnt coefficients. Just as there is an analysis 
version of compressed sensing, there is an analysis version of 
dictionary learning called transform learning [8, 9]; it learns an 
analysis basis (transform) that operates on the signals to generate 
the corresponding coefficients. The transform learning based 
inversion formulation is as follows, 
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The term in brackets corresponds to transform learning. Here 
T operates on the patches of the image to produce sparse 
coefficients zi. Note that there is an extra regularization term 

( )2
log det

F
T T− in (7); this term is to prevent the trivial 

solution T=0 Z=0 and the degenerate solutions where T is very 
large and Z very small or vice versa. 

It has been empirically seen that transform learning yields 
better results than dictionary learning for inversion tasks [8, 9]. 
The theoretical reason is not exactly known. In recent times, the 
authors developed the framework of deep transform learning 
[10, 11]. However, the deep extension has been used for 
supervised learning tasks so far, not for inversion. This is the 
first work that will propose a deep transform learning based 
inversion. Given that the shallow version of transform learning 
yields better results than the shallow version of dictionary 
learning, we expect that our deep transform learning based 
inversion will improve deep dictionary learning and perhaps 
over other state-of-the-art inversion techniques. Specifically, in 
this work, we look into the example of dynamic MRI 
reconstruction.  

II. PROPOSED FORMULATION 

As mentioned before, transform learning is the analysis 
equivalent of dictionary learning. Although the technique is 
known to the signal processing community we review it for the 
sake of completeness. The model is expressed as 

TX Z=       (8) 

Here T is the transform, which operates on the data X to generate 
the representation Z.  

The optimization problem for transform learning is 

expressed as –  

( )2 2

1,
min + log det +

F FT Z
TX Z T T Z − −   (9) 

Here l1-norm enforces sparsity on the representation. The factor 

log detT− imposes a full rank on the learned transform; this 

prevents the degenerate solution (T=0, Z=0). The additional 

penalty 
2

F
T is to balance scale; without this log detT− can 

keep on increasing producing degenerate results in the other 
extreme. 

The minimization problem (9) is solved by alternately 
updating the two variables [8, 9].  

2

1
min

FZ
Z TX Z Z − +  

( )2 2
min + log det

F FT
T TX Z T T  − −   

Updating the coefficients is straightforward. It can be 
updated via one step of soft thresholding.  

( ) max 0,
2

Z signum TX TX
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   (10) 

There is a closed-form update for the Transform as well. This 

is given by –   
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Our proposed deep transform learning [10, 11] is the multi-
layer extension of the shallow one. It can be thought of as the 
application of multiple levels of transforms to generate the 
coefficients. Mathematically this is expressed as follows –   
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Here φ denotes the activation function; without which all the 
transforms will collapse into a single one. Previous studies [10, 
11] used tanh or sigmoid as activation functions. In this work, 
we will be using rectified linear unit (ReLU) type activations.  

Before going into the formulation, we discuss the reason for 
the deep extension. The shallow inversion formulation is linear. 
It is known in neural network theory about the function 
approximation capability of non-linear networks with ReLU 
[12]. The approximation capacity improves when one goes 
deeper with ReLU [13]. This is the prime reason behind the 
extension to deeper layers of transform with ReLU activation. 
We extend the basic transform learning based inversion 
formulation (9) to accommodate multiple layers of transforms. 
Mathematically this is expressed as follows, 
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In (13) we have shown the formulation for three layers. The 
derivation for the solution will be generic enough to solve for 
more. Also, the coefficients after the application of each layer of 
transform should be non-negative to impose ReLU activation. 

This means that 
1 0iT Px   and 

2 1 0.iT T Px   

To solve (13) we resort to the variable splitting technique 

[14]. We introduce two sets of proxy variables 
1i iw T Px= and 

2 1i ih T T Px= . This leads to the following augmented Lagrangian 

formulation. 
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H and W are formed by stacking the hi’s and wi’s as columns. 
Owing to the non-negativity constraints the proxy variables wi 
and hi need to be greater than 0. Ideally, we would require to 
have two multiplicative hyper-parameters corresponding to the 

two newly introduced terms 
2 2

2 1 and i i i iF F
T w h T Px w− − ; 

these hyper-parameters would have to be gradually increased 
with passing iterations to impose strict equality between the 
proxies and the variables; however, we argue that since these 
two terms correspond to two intermediate layers of deep 
transform learning, there is no reason to give them selective 
importance over others. Hence we keep the multiplicative hyper-
parameter to be unity. 

 

[1] 4 http://www.sci.utah.edu/bisti.html 

We employ the alternating direction method of multipliers 
(ADMM) [15] to solve (14). We update each of the variables as 
sub-problems.  
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All the sub-problems have closed-form solutions. P1 to P3 
are standard transform updates. This has been discussed in (11). 
P4 to P6 are least-square problems that have a closed-form 
solution in the form of pseudoinverse. However, here we solve 
it using conjugate gradient since A may not always be available 
as an explicit matrix. P7 is a sparse coefficient update, we have 
already discussed its closed-form update in (10). It must be 
noted that for the updates of P4 and P5, one must need to ensure 
that the solution is non-negative; ideally one needs Forward-
Backward splitting type iterative algorithms to solve this. 
However, these iterations make the overall algorithm 
computationally complex; our simple fix is to enforce non-
negativity on hi and wi by putting all the negative values to 
zeroes after the pseudo-inverse solution. 

The problem is non-smooth and non-convex. There is a 
recent work that shows the convergence of ADMM (to local 
minima) for such a class of problems [16] especially when each 
of the sub-problems has a closed-form update. The convergence 
is local, in practice, we stop the iterations when the objective 
function does not change much over consequent iterations.  

The computational complexity of each iteration is mainly 
dictated by transform updates. Since they require computing 
singular value decompositions, their complexity is of O(n3). The 
complexity for solving the least square problems is O(n2) by 
conjugate gradient. The last sub-problem (sparse update) costs 
O(n). 

III. EXPERIMENTAL EVALUATION 

We address the problem of dynamic MRI reconstruction. 
Experiments are conducted on two publicly available datasets4. 
The two sequences will be called the Cardiac Perfusion 
Sequences 1 and 2. The data was collected on a 3T Siemens 
scanner. In this work we simulated a radial sampling with 24 
lines that were acquired for each time frame; this corresponds to 
an under-sampling ratio of 0.21. The full resolution of the 
dynamic MR images is 128 x 128. About 6.7 samples were 
collected per second. The scanner parameters for the radial 
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acquisition were TR=2.5–3.0 msec, TE=1.1 msec, flip angle = 
12° and slice thickness = 6 mm. The reconstructed pixel size 
varied between 1.8 mm2 and 2.5 mm2. Each image was acquired 
in a ~ 62-msec read-out, with a radial field of view (FOV) 
ranging from 230 to 320 mm.  

We have compared our method with a few recent 
transductive reconstruction techniques. The first one is based on 
bi-linear modeling based recovery (BLM) [17]. The second one 
is deep unrolling [18]. We have also compared with DDL based 
reconstruction [7]. Both [17] and [18] are relatively recent 
techniques.  

As before, for our proposed method we tuned the parameters 
using grid search on a separate dynamic MRI data not used here. 
The obtained parametric values are - λ = .2, μ = .5 and γ = .2. 3D 
patches of size 16 x 16 x 4 were used. We obtained the best 
results for 4 layers; the number of basis elements in different 
layers is 256-128-128-64.  

The experimental results are shown in Table I. MRI 
reconstruction quality is usually measured by Normalized Mean 
Squared Error (NMSE). We use the same metric. From the 
numerical results, we find that our method yields the best results. 
BLM which is a transductive technique yields the worst results. 
Both DDL and BCS* yield similar results. Our proposed method 
is worse than DDL and BCS* for 2 layers but is better than these 
for 3, 4 and 5 layers.  

The numerical results do not give the complete picture for 
MRI reconstruction. Therefore it is customary to show 
reconstructed and difference (between ground-truth and 
original) images. We will only show the results with 4 layers 
from our proposed deep transform learning.  

One frame each from the reconstructed Cardiac Perfusion 1 
sequence is shown in Fig. 1. One can see that even though BLM 
shows poor NMSE, its reconstruction quality is actually at par 
with DDL and Deep Unrolling; BLM shows a lot of 
reconstruction artifacts but can preserve the edges. DDL and 
Deep Unrolling on the other hand overtly smooth the tissue 
boundaries. Our proposed technique preserves tissue boundaries 
with minimal artifacts. 

The difference images for Cardiac Perfusion 1 are shown in 
Fig. 2. These are obtained by taking the absolute difference 
between the fully sampled ground truth and the reconstructed 
images. The thus obtained difference images are contrast 
enhanced uniformly for visual clarity. From these difference 
images, we can see that BLM indeed generates considerable 
reconstruction artifacts; the artifacts are much less pronounced 
in Deep Unrolling. DDL improves over Deep Unrolling. Our 
method yields the best reconstruction; the artifacts are 
negligible. 

TABLE I.  RECONSTRUCTION PERFORMANCE IN TERMS OF NMSE 

Method BLM Deep 

Unrolling 

DDL 3 layer Proposed 2 

layer 

Proposed 3 

layer 

Proposed 4 

layer 

Proposed 5 

layer 

Cardiac 1 0.0586 0.0356 0.0315 0.0408 0.0219 0.0184 0.0307 

Cardiac 2 0.0474 0.0312 0.0298 0.0400 0.0202 0.0149 0.0286 

 

 
Fig. 1. Reconstructed Images 1. Left to Right – Ground-truth, BLM, Deep Unrolling, DDL and Proposed 

    

Fig. 2. Difference Image. Left to Right – BLM, Deep Unrolling, DDL and Proposed 

 

IV. CONCLUSION 

This is the first work that shows that proposes a generic 
inversion approach based on deep transform learning. In 
particular, we have addressed the problem of dynamic MRI 
reconstruction. For this problem, we have compared it with the 

state-of-the-art. We improve upon the rest by a considerable 
margin.  

In the future, we would like to incorporate structured inverse 
problems, for example, trees, graphs, group-sparsity, etc. into 
the deep transform learning based inversion framework.  
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