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Abstract—Deep learning has shown remarkable promise in
medical imaging tasks, reaching an expert level of performance
for some diseases. However, these models often fail to generalize
properly to data not used during training, which is a major
roadblock to successful clinical deployment. This paper proposes
a generalization enhancement approach that can mitigate the
gap between source and unseen data in deep learning-based
segmentation models without using ground-truth masks of the
target domain. Leveraging a subset of unseen domain’s CT
slices for which the model trained on the source data yields
the most confident predictions and their predicted masks, the
model learns helpful features of the unseen data over a retraining
process. We investigated the effectiveness of the introduced
method over three rounds of experiments on three open-access
COVID-19 lesion segmentation datasets, and the results illustrate
constant improvements of the segmentation model performance
on datasets not seen during training.

Index Terms—Deep learning, Generalization, Medical imaging,
COVID-19 lesion segmentation.

I. INTRODUCTION
Over recent years, advances in machine learning capabilities

have sparked a surge in developing deep learning (DL)-based
diagnostic/predictive models. Many areas of medicine have
benefited from DL, including medical imaging, where sophisti-
cated algorithms have achieved an expert level of performance.
However, despite their high-level reported performance and
rigorous evaluations during the development phase, most of
the DL models for medical imaging tasks are not reliable
to be deployed in real-world clinical settings [1]. One major
roadblock to the successful deployment of medical imaging-
based DL models in clinical practice is that trained models do
not generalize well to unseen domains. Here, unseen domain
refers to images from a different clinical center, probably
taken with a different scanner and/or imaging setting. The
reason is medical images from the same imaging modality
may show significant visual differences in terms of quality,
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appearance, and spatial features when acquired by different
scanners/vendors, scanning settings, and patient populations.
A straightforward solution to improve DL models’ gener-
alizations in the field of medical imaging is using multi-
center heterogeneous training sets [2], [3]. Indeed, DL medical
imaging models can achieve a high level of generalizability
when training datasets consist of an abundance of high-
quality images from various health centers with different
imaging vendors and acquisition settings. However, hospitals
and healthcare institutions are prohibited from disclosing
their in-house datasets due to data sharing regulations and
patients’ privacy protocols. As a result of these limitations,
DL models trained on limited-diversity datasets, which work
ideally well on in-domain evaluations, suffer from significant
performance degradation on images from unseen domains [4].
Consequently, improving the DL model’s generalization is
crucial in medical imaging applications.
Prior work: One significant barrier in the successful deploy-
ment of DL medical imaging analysis models is performance
degradation on unseen domains. In general, there are three
popular approaches to enhance DL models’ generalization
trained on a limited source domain. The first is transfer
learning that addresses the lack of training data by fine-tuning
a partially pre-trained network [5]–[7]. Existing DL models
have leveraged both natural (ImageNet) and medical images to
improve performance. Adopting top-performing CNNs such as
DenseNet, Inception-Net, and ResNet pre-trained on ImageNet
as the encoding path can enhance the results of segmentation
networks [8], [9]. Reference [6] benefits from a two-step
transfer learning approach to cope with the lack of training
data. First, they utilize ResNet50 pre-trained on ImageNet as
the encoding path’s basis. The next step involves pre-training
the segmentation network using a large medical imaging
dataset, compensating for the significant gap between natural
and medical images and resulting in further improvements.
The second approach is domain generalization, known as out-
of-distribution generalization, which aims to learn a DL model
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using a single or multiple different but related datasets that can
be generalized on unseen test data [10], [11]. Data generaliza-
tion techniques extract features specific to the source domain
but invariant across domains [12]. As another example of
data generalization, data augmentation strategies have shown
effectiveness in reducing the shift between source and unseen
domains. Reference [12] proposed a deep-stacked transforma-
tion method that could significantly improve the generalization
of DL segmentation models in Magnetic Resonance (MR) and
ultrasound images. Another proposed solution for boosting
the generalization of DL methods is domain adaption that
mitigates the gap between the source and a specific unseen
domain without using its annotations during the training
process. These techniques reduce the shift between the source
and target domains in input space, feature space, or output
space, mostly using generative adversarial network [13] or its
variants [14], and have shown promising results in medical
imaging [12], [15]–[17]. However, the need for reliable DL
models in medical imaging to be deployed in clinical practice
calls for developing novel techniques to achieve enhanced
generalization on unseen domains.
Contributions: This study proposes a generalization enhance-
ment approach specific to DL segmentation models that can re-
duce the shift between the source training set and test sets from
unseen domains, addressing a critical challenge in deploying
medical imaging DL models in clinical settings. Pseudo-labels
have shown promising results in improving the performance
of DL classifiers on in-domain and unseen data [18], [19] and
DL segmentation models on in-domain data [20]. In this study,
leveraging pseudo-labels, we can improve the DL models’
performance in medical image segmentation tasks and on
unseen data. We perform our experiments on three publicly
available CT datasets for COVID-19 lesion segmentation. In
the first step, our proposed method involves applying a DL
segmentation model trained on a single source domain on test
images from an unseen domain. Next, the model confidence on
the predicted masks is measured using an introduced certainty
index. The CT slices from the unseen domain with the highest
certainty index and their predicted masks are used to retrain
the previously trained model. The results indicate that the
proposed method can enhance the model performance on
unseen domains.

Following, we explain the proposed generalization enhance-
ment approach and the implemented deep segmentation net-
work in detail. Then the datasets used in our experiments are
introduced. Next, we present the experimental setting, discuss
the results, and conclude the paper.

II. METHODOLOGY

This study proposes a generalization enhancement approach
for DL COVID-19 lesion segmentation models from CT slices,
which mitigates the shift between the source and a target
unseen test set. The goal is to increase the performance
of a predictor (DL segmentation network), F : X → Y ,
learned from a source domain, S : (xs, ys), on a specific
unseen domain, E : (xe, ye). In other words, as illustrated

Fig. 1. The proposed generalization enhancement pipeline for DL COVID-19
lesion segmentation model.

in Figure 1, our proposed method automatically extracts and
annotates a subset of the test set from an unseen domain
utilizing a probabilistic selection index. The selected data
samples and their associated predicted masks are then used
to retrain and boost the previously trained model. For this
purpose, first, we predict the infection masks of an unseen
test set using a DL segmentation model trained on the source
dataset. Then, we extract a portion of the test images for which
the model has predicted the most certain infection masks.
Assuming that we do not have the ground-truth masks of the
test set, we propose a Certainty Index (CI) to quantify the DL
segmentation model’s confidence on predicted masks of test
images, defined as follows

CI(Ŷ ) =

∑N
i=1 Pi

N
for Pi > Cut− off threshold,

(1)
where Ŷ is the predicted infection mask on a test CT slice,
Pi denotes the predicted probability of pixel i belongs to
the infection class, and N is the number of pixels in a CT
slice where Pi is greater than a determined cut-off threshold.
The pixels with Pi values higher than the cut-off threshold
are assigned to the lesion class, and the rest are considered
as the background class. The cut-off threshold is determined
based on the in-domain test set and kept the same for external
domains. In other words, the cut-off threshold that yields
the best performance on the in-domain test set is considered
the cut-off threshold for all the unseen domain test sets.
We threshold the infection probabilities to consider pixels
predicted as infection class for which the model is more
confident and eventually find the most certain predicted masks.
Indeed, for each test image, the CI determines the average
of Pi over pixels belonging to the lesion class, quantifying
the model’s confidence in segmenting regions of infection. It
should be noted that to get rid of the tiny fault predictions,
we eliminate the test CT slices for which N is smaller than
50. It is worth noting that compared to the size of CT slices
in our experiments (512 × 512 pixels) and the probable size
of the lung region, an infection region with the size of 50
pixels is quite negligible. We then sort all predicted masks
by their CI value and select the most certain predictions if
their CI is not less than a determined limit. Next, we leverage
the subset of CT slices with the highest CI value along
with their predicted infection masks to retrain our initially
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TABLE I
OPEN-ACCESS COVID-19 SEGMENTATION DATASETS USED IN OUR EXPERIMENTS.

Number of infected CT slices Number of patients Matrix size
Dataset A 1351 10 512× 512

Dataset B (COVID-CT-Rate) 433 82 512× 512
Dataset C 373 9 630× 630

trained segmentation model. It should be clarified that the
number of most-certain predictions used for retraining and
the CI limit are derived based on the size of test sets and
measured CIs in our experimental settings. Our experimental
results demonstrate that the network can learn informative
features from the unseen domain dataset through the retraining
process, leading to improved generalization. In other words,
our proposed method can mitigate the domain shift between
source and unseen data without having access to ground-truth
masks of the unseen domain during training and retraining. We
use LinkNet [21], which is an efficient semantic segmentation
network in terms of computation and memory, as our DL
segmentation model. As illustrated in Fig. 1, the model takes
the lung region of a 2D CT slice as the input and generates
a mask indicating the areas of infection. We remove non-lung
regions from chest CT slices using an open-access pre-trained
lung segmentation model [22] that can accurately detect lung
regions from COVID-19 CT slices and has been used in a
variety of COVID-19 studies such as outcome prediction [23],
[24], diagnosis [25], [26], and lesion segmentation [27], [28].
Using the lung regions as the segmentation model’s input
decreases false-positive predictions that fall outside the lung
area. Besides, rendering non-lung pixels to zero reduces the
computational time, leading to faster convergence. Transfer
learning is a powerful technique to resolve the shortage of
data when deep learning models are designed for medical
image analysis tasks with limited labeled datasets. Existing
DL-based COVID-19 lesion segmentation studies have lever-
aged top-performing CNNs such as DenseNet, ResNet, and
Inception-Net pre-trained on natural images (like the ImageNet
dataset [29]) as the encoder’s backbone to achieve improved
results [8], [9]. Here, we adopt ResNet34 [30] pre-trained
on the ImageNet dataset as the encoding path’ backbone of
the LinkNet. The pre-trained weights are used as the initial
weights of the encoder, which will be updated during the
training.

Furthermore, we leverage the data augmentation on the
fly over training passes to improve the model’s generaliza-
tion on unseen data. Each mini-batch of input CT slices
during the training is converted into synthetic images by
applying conventional data transformation strategies, including
zooming, shifting, flipping, and shearing. Indeed, during the
training process, each synthetic image will be observed by the
model only once, resulting in an improved generalization. It is
noteworthy that the same data augmentation approach is used
in the re-training process, meaning that different augmentation
transformations are applied to high CI images from unseen
domains to make the best use of them in the re-training
process. We adopt a hybrid loss function, which is the sum of
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Fig. 2. Samples of COVID-9 chest CT slices from datasets A, B, and C
used in our datasets and their intensity histograms.

Dice loss [31] and Binary Cross-Entropy (BCE). Dice loss
balances the foreground and background pixels, and BCE
provides image-level supervision for precise segmentation.

III. DATASET DESCRIPTION

As illustrated in Table I, we use three open-access COVID-
19 lesion segmentation datasets in our experiments:

• Dataset A [32], containing whole lung CT volumes of 10
COVID-19 patients from one clinical center. It contains a
total of 2, 581 2D CT images with the size of 512× 512
pixels. 1, 351 out of 2, 581 CT slices demonstrate traces
of COVID-19 manifestations, which have been annotated
by three expert radiologists. Lesion and lung regions’
masks have been provided for all CT slices.

• Dataset B (COVID-CT-Rate), our previously introduced
dataset [33], which contains 433 CT slices from 82
COVID-19 patients. The images’ matrix size is 512×512.
All images have been saved in the Digital Imaging
and Communications in Medicine (DICOM) format and
Hounsfield Unit. All the lesion masks have been carefully
modified/verified by a thoracic radiologist with 20 years
of experience. For more details regarding the COVID-
CT-Rate dataset please refer to Ref [33].

• Dataset C [34], containing nine COVID-19 lung CT
volumes, with a total of 829 CT slices. 373 out of 829 CT
slices indicate infections that a radiologist has annotated.
Besides the areas of infection, the lung regions’ masks
exist for all CT slices. The CT slices have a size of
630 × 630 pixels resized to 512 × 512 pixels for our
study.

We perform three rounds of experiments. For each round, one
dataset is used for training (source data). The other two are
used as unseen test sets to evaluate the proposed method’s
performance in enhancing the segmentation network’s gener-
alization.
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TABLE II
MODEL PERFORMANCE ON IN-DOMAIN AND UNSEEN TEST SETS BEFORE AND AFTER GENERALIZATION ENHANCEMENT. IN EACH EXPERIMENT, ONLY

ONE DATASET WAS USED IN THE TRAINING PHASE, AND THE TWO OTHERS WERE USED AS UNSEEN TEST SETS.

TABLE III
THE AVERAGE OF MODEL PERFORMANCE ON IN-DOMAIN AND UNSEEN TEST SETS OVER THREE ROUNDS OF EXPERIMENTS

DSC (Ave± std) SPC (Ave± std) SEN (Ave± std)
in-domain test set 0.842± 0.03 0.997± 0.002 0.886± 0.02

unseen test set (before enhancement) 0.753± 0.025 0.995± 0.0017 0.782± 0.064
unseen test set (after enhancement) 0.765± 0.014 0.995± 0.0013 0.813± 0.049

IV. EXPERIMENTAL RESULTS

In pre-processing, we normalize each CT slice based on the
mean and standard deviation of its pixel intensities. The Adam
optimization [35] with an initial learning rate equal to 0.001 is
implemented to minimize the hybrid loss function during the
training. The number of training epochs is set to 100. However,
if the loss function on the validation set does not reduce after
five epochs, the training process will stop to prevent the model
from over-fitting. For training the segmentation network, we
split the source dataset into three independent subsets for
training (60%), validation (10%), and testing (30%). Datasets
used in training, validation, and test sets are kept patient-
independent to reduce the risk of information leakage, meaning
that the CT slices of patients are not shared among underlying
datasets. The model’s weights associated with the highest Dice
Similarity Coefficient (DSC) on the validation set are saved
for the evaluation. We perform three rounds of experiments. In
each round, we use one of the datasets as the source set and the
other two as the external datasets. We train the segmentation
network using source data and evaluate the performance of
the trained network on in-domain test sets (a subset of the
source data) and two other datasets as unseen domains. In
each evaluation on unseen datasets, we measure the CI for
the predicted lesion masks and sort the CT slices based on
their CI to identify the most confident predictions. The CT
slices with the highest CI value, if their measured CI is not
less than a determined limit, are leveraged for retraining the
initially trained segmentation model. The number of most-
confident predictions and the value of the CI limit have
been determined based on the size of the external test sets
and measured CIs. As such, the most-certain predictions (CT
slices and their predicted masks) are fed into the network
for retraining. The implementation setting for retraining is

kept the same as the initial training. Then, we evaluate the
performance of the retrained model on the unseen test set.
Fig. 2 presents random samples of datasets A, B, and C and
their intensity distributions. As can be observed, CT slices
acquired by different scanners, vendors, and from different
populations differ in terms of quality, appearance, and spatial
features.
We assess the model’s performance in segmenting COVID-
19 lesions by comparing the predicted and the ground-truth
segmentation masks, using DSC, Sensitivity (SEN), and Speci-
ficity (SPC) as the evaluation metrics. Table II represents the
average of the evaluation metrics on the in-domain and unseen
test sets through a five-fold cross-validation approach. As illus-
trated, the proposed method can improve the performance of
the DL segmentation network on unseen datasets, particularly
the sensitivity metric, meaning that more lesion pixels have
been labeled correctly. Besides, the results obtained by the
retrained model show less variation on unseen data. Indeed,
leveraging a subset of the target domain for which the model
trained on the source set yields the most confident predictions
and their predicted lesion masks, the network can extract
informative features specific to the target domain during the
retraining process. The average of model performance over
three rounds of experiments on in-domain and unseen test sets
have been demonstrated in Table III. As can be seen, although
the enhancement approach can mitigate the gap between
source and unseen data, there is still a significant decrease
in segmentation results. One reason is that the most-confident
predicted masks might be partially incorrect, which misleads
the model during retraining, meaning that the introduced CI
metric is not robust to possible outliers existing in the most
confident predictions. One possible solution is using a human-
in-loop approach to modify the predicted masks in a timely
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fashion, leading to further improvements. Our findings indicate
that the proposed generalization enhancement approach can
improve the DL segmentation model’s performance on CT
slices acquired by different healthcare systems and from other
patient populations.

V. CONCLUSION

This research proposes a generalization enhancement ap-
proach for DL segmentation models to improve model per-
formance on an unseen target domain. Indeed, the proposed
method mitigates the shift between the source and target
datasets without having access to ground-truth pixel-level
annotations of the unknown domain. We examined the effec-
tiveness of our proposed method on three open-access datasets
for COVID-19 lesion segmentation from chest CT slices. The
results demonstrate that the enhancement method can improve
the segmentation model’s performance on unseen data, partic-
ularly the sensitivity metric, meaning that more lesion pixels
have been labeled correctly. We leave the implementation
of our method on other imaging modalities like MR and
ultrasound images for the future. Exploring the efficacy of the
proposed generalization enhancement models on multi-class
segmentation tasks is another future direction of the present
work.
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