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Abstract—Deployed in the context of supervised learning,
Mixup is a data-dependent regularization technique that consists
in linearly interpolating input samples and associated outputs. It
has been shown to improve accuracy when used to train on stan-
dard machine learning datasets. However, authors have pointed
out that Mixup can produce out-of-distribution virtual samples
and even contradictions in the augmented training set, potentially
resulting in adversarial effects. In this paper, we introduce Local
Mixup in which distant input samples are weighted down when
computing the loss. In constrained settings we demonstrate that
Local Mixup can create a trade-off between bias and variance,
with the extreme cases reducing to vanilla training and classical
Mixup. Using standardized computer vision benchmarks, we also
show that Local Mixup can improve accuracy.

Index Terms—Mixup, Regularization, Manifold Intrusion

I. INTRODUCTION

Deep Learning has become the golden standard for many
tasks in the fields of machine learning and signal processing.
Using a large number of tunable parameters, Deep Neural
Networks (DNNs) are able to identify subtle dependencies in
large training datasets to be later leveraged to perform accurate
predictions on previously unseen data. Without constraints
or enough samples, many models can fit the training data
(high variance) and it is difficult to find the ones that would
generalize correctly (low bias).

Regularization techniques have been deployed with the aim
of improving generalization [1]. A popular data-dependent
regularization technique consists of artificially increasing the
size of the training set, which is referred to as data augmen-
tation [2], [3]. In the field of computer vision, for example,
it is very common to generate new samples using basic class-
invariant transformations [4], [5].

In [6], the authors introduce Mixup, a data augmentation
technique in which artificial training samples (x̃, ỹ), called
virtual samples, are generated through linear interpolations
between two training samples (xi,yi) and (xj ,yj). The
associated output is computed as the corresponding linear
interpolation on the respective outputs. Mixup improves gener-
alization error of state-of-the-art models on ImageNet, CIFAR,
speech, and tabular datasets [6]. This method is also used in
the context of few shot learning [7], [8].

By using linear interpolation, virtual samples can in
some cases contradict each other, or even generate out-of-
distribution inputs. This phenomenon has been described in [3]
where the authors use the term manifold intrusion. As such, it
is not clear if Mixup is always desirable. More generally, the
question arises of whether Mixup could be amended to reduce
the risk of generating spurious interpolations.

In this paper we introduce Local Mixup, where virtual
samples are weighted in the training loss. The weight of each
possible virtual sample depends on the distance between the
endpoints of the corresponding segment (xi,xj). In particular,
this method can be implemented to forbid interpolations
between samples that are too distant from each other in the
input domain, reducing the risk of generating spurious virtual
samples, as we shall discuss later in this paper.

Here are our main contributions:
• We introduce Local Mixup, a mixup method depending on

a single parameter whose extremes correspond to classical
Mixup and Vanilla.

• In dimension one, we prove that Local Mixup allows to
select a bias/variance trade-off.

• In higher dimensions, we show that Local Mixup can help
achieve more accurate models than classical Mixup using
standard vision datasets.

• Our work contributes more broadly to better understand-
ing the impact of Mixup during training.

II. RELATED WORK

Introducing notations: In supervised Machine Learning, a
training dataset Dtrain made of pairs of inputs and correspond-
ing outputs is used to learn the model’s parameters, and a test
one Dtest is used to evaluate the performance of the model on
previously unseen inputs [9]. We also consider that both input
and output data lie in metric spaces (X , dX) and (Y, dY).
Typically, X and Y are assumed to be Euclidean spaces with
the usual metrics. We denote by f : X → Y the parametric
model to be trained and by F the hypothesis set, i.e. the set
containing all candidate parametrizations of the model f ∈ F .

To train our model, we use an error function L that measures
the discrepancy between the model outputs and expected ones.
Training the model amounts to minimizing the training loss
while generalization may be quantitavely evaluated by the test
loss, resulting in the following simplified equation:

Lvanilla =
∑

(x,y)∈D

L(f(x),y).

Data augmentation and mixup: To improve generalization
one can use regularization techniques [1]. Among them, data
augmentation is a form of data-dependent regularization [3].
Recently, the use of data-dependent methods relying on some
sort of mixing has emerged [6], [10]–[19]. The pioneering
mixing method is Mixup [6], whose mixed samples (x̃, ỹ) are
generated by linear interpolations between pairs of samples,
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Fig. 1: Illustration of the proposed Local Mixup method. On the left, only vanilla samples are used, without data augmentation.
Ground truth is depicted in filled regions. On the middle we depict Local Mixup where we only interpolate samples which
are close enough, leading to no contradiction with ground thuth. On the right we depict Mixup in which we interpolate all
samples, leading to contradictory virtual samples.

i.e. x̃i,j,λ = λxi + (1 − λ)xj and ỹi,j,λ = λyi + (1 − λ)yj

for some training samples (xi,yi) and (xj ,yj) and some
λ ∈ [0, 1] . The Mixup training criterion is defined as:

Definition II.1 (Mixup Criterion). Let λ ∼ Beta[α, β],
i, j discrete variables uniformly drawn with repetitions in
{0, . . . , n− 1}. f∗ minimizes the Mixup criterion if:

f∗ = argmin
f∈F

1

n2
Eλ


∑

D2
train

L (ỹi,j,λ, f(x̃i,j,λ))

︸ ︷︷ ︸
Lmixup

 .

As defined above Mixup encourages linear behavior [6].
The positive effect of this linear behavior questioned several
authors who aimed at explaining theoretically and empirically
Mixup. In [20] they shows that Mixup can be interpreted as
the combination of a data transformation and a data perturba-
tion; In [21] they highlight that Mixup impacts the Lipschitz
constant L of the gradient of the network.

In [3] they described and introduced the term manifold
intrusion. This phenomenon is depicted in Figure 1 on the
right, where we see that virtual samples created through Mixup
between distant red samples lie outside the manifold domain
for the red class. The method of [3] called Adamixup uses an
additional neural network to remove such interpolations.

III. MIXUP IN DIMENSION 1

The detailed proofs of each theoretical result can be found
in a longer version of this paper [22]. Let us consider the
simple case where our model f is defined on R. Without loss
of generality, let us consider that the training set Dtrain =
{xi, yi} is ordered by increasing input, i.e, xi ≤ xi+1.

For a given x̃, Mixup’s loss implies that the output f∗(x̃)
of the model is determined by the set E(x̃) of all convex
combinations that can be obtain x̃ from two training inputs
xi and xj : E(x̃) = {i, j, λi,j |x̃ = λijxi + (1 − λij) xj}. It
is clear that for any x̃ ∈ [x0, xn−1], E(x̃) is non empty and
finite. In practice, the distribution of λ can be uniform [6],
[10] λ ∼ Beta(α = 1, β = 1) = U(0, 1). In this case, we
show the output f∗(x̃) of x ∈ [x0, xn] is the barycenter of the
target values corresponding to the points of E(x̃).

Lemma III.1. ∀x̃ ∈ [x0, xn−1],

f∗(x̃) =
1

card(E(x̃))
∑

(i,j,λi,j)∈E(x̃)

λi,jyi + (1− λi,j)yj . (1)

A consequence of this lemma is the following theorem:

Theorem III.2. The function f∗ that minimizes the loss on
the training set is piecewise linear on [x0, xn−1], linear on
each segment [xi, xi+1] and defined by Equation (1).

In practice inferring a function f∗ that minimizes that the
Mixup Criterion is usually not desired in machine learning,
and one looks for f with a sufficiently small loss to have
a regularizing effect. Indeed f∗ is not likely to generalize
well. Still, we note that it tends to an average of convex
combinations and thus leads to a model with a low variance.

IV. LOCAL MIXUP

A. Locality graphs

Consider a (training) dataset D made of pairs (x,y). We
propose to build a graph from D as follows. We define GD =
⟨V,W⟩ where V = {x | ∃y, (x,y) ∈ D}. The symmetric real
matrix W is based on D, where D is the pairwise distance
matrix D[i, j] = dX (xi,xj).

In this work, we consider various ways to obtain W, but
the rationale is always the same: to obtain a similarity matrix
where large weights correspond to closest pairs of samples.
Namely, we consider K-nearest neighbors graphs, where we
set to 1 weights of target vertices corresponding to the K
closest samples for a given source vertex and 0 otherwise;
thresholded graphs where W[i, j] = ϕ(D[i, j]) and ϕ(d) =
1d≤ε; smooth decreasing exponential graphs where W[i, j] =
exp(−αD[i, j]). The loss is then weighted using W:

Llocal mixup =
∑

D2
train

W[i, j]L (ỹi,j,λ, f(x̃i,j,λ)) . (2)

For computational cost considerations, we compute a graph
for each batch (random subset) of samples during stochastic
gradient descent. As such, the weights associating two samples
can vary depending on the chosen graph and random batch.
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In the extreme case where some weights are 0, the corre-
sponding virtual samples are discarded during gradient de-
scent, resulting in only considering local interpolations of
samples, hence the name Local Mixup.

B. Low dimension

In this section, we are interested in proving that Local
Mixup allows to tune a trade-off between bias and variance
on trained models. For this purpose, we simplify the problem
to dimension 1 and only consider K-nearest neighbor graphs.

In this case, note that varying K can create a range of
settings where K = 0 boils down to vanilla training and K ≥
n where n is the number of training samples boils down to
classical Mixup where all combinations are allowed.

1) Local Mixup and the bias/variance trade-off: Let us first
recall the definitions of the bias and variance in the context of
a machine learning problem.

Definition IV.1 (Bias and Variance). Let us consider a training
set Dtrain and a function f from X to Y . We define Bias and
Variance as follow:

• Bias: Bias(f)2 = Etrain[(f(x)− y)2].
• Variance: V ar(f) = Etrain[(f − Etrain[f ])

2].

We consider two settings. In the first one, the input domain
Z/nZ is periodic and thus the number of samples is finite.
In the second one, the input domain Z is infinite and outputs
are independent and identically distributed (i.i.d).

Periodic setting
Let us consider that the training set Dtrain is made of pairs

(x, y), where {x | ∃y, (x, y) ∈ Dtrain} = Z/nZ. We also
consider dX (x, x′) = |x− x′| ∈ {0, · · · , n− 1}.

In this case, we can write explicit formulations of f∗
K , the

function that minimizes the Local Mixup criterion for K-
nearest neighbors graphs. Following similar arguments to those
used to obtain Equation (1): for a given xi we know that the
optimal value for f∗

K(xi) would be an average of the the ỹ
that correspond to the possible interpolations. we obtain:

∀xi ∈ Z/nZ, f∗
K(xi) =

1

K(K + 3)/2
(2Kyi + SK(xi)), (3)

where SK(xi) is defined recursively as follows:

SK+1 =

{
0 if K = 0
SK(xi) +AK+1(xi) ∀K ≥ 1

. (4)

and:

AK(xi) =
1

K

K−1∑
k=1

(K − k) · yi−k + k · yi+K−k.

On Figure 2 we depicted for a given xi the different interpola-
tions and ỹ that contribute to fK(xi). In blue the interpolation
between xi and its direct neighbors, in red the interpolation
between points other than xi that happen to intersect xi. As
we increase K, the influence of SK (red points) increases.

We obtain the following theorem:

xi−2xi−1 xi xi+1xi+2 xi−2xi−1 xi xi+1xi+2

Fig. 2: We depict here the terms of f∗
K(xi) given by Eq (3) for

different values of K. In blue the interpolations corresponding
to 2Kyi and in red the terms of the sum SK . On the right,
K = 2 and on the left K = 3.

Theorem IV.1 (Convergence of f∗
K in the periodic setting).

As K grows, it holds that:

∀xi ∈ Z/nZ,
f∗
K(xi) → EDtrain

[y], (5)

Bias2(f∗
K) → Etrain[(yi − Etrain[y])

2], (6)

V ar(f∗
K) = Etrain[(f

∗
K(xi)− Etrain[f

∗
K(xi])

2
] → 0, (7)

V ar(f∗
K) is eventually nonincreasing.

This theorem states two main results: 1) in the case of Mixup
the function that minimizes the loss f∗ has zero variance
and converges to Etrain[y]. 2). Eventually the variance of
the function that minimizes the Local Mixup criterion is
decreasing, showing that the proposed Local Mixup can indeed
tune the trade-off between the bias and variance.

i.i.d random output setting
Let us now consider that the training set is made of inputs

{x | ∃y, (x, y) ∈ Dtrain} = Z and yi are i.i.d. according to a
random variable R of variance σ2.

Theorem IV.2. For a signal with i.i.d outputs, the variance
is eventually bounded by:

42σ2

K2
≤ V ar(fK(xi)) ≤

8σ2

K
. (8)

2) Invariance of linear models: Interestingly, we can show
that both Mixup and Local Mixup lead to the same optimal
linear models, as stated in the following theorem:

Theorem IV.3. For a linear model: f(x) = ax+ b, a, b ∈ R,
the function f∗ that minimizes the loss of Mixup and Local
Mixup is the same.

C. High Dimension and Lipschitz constraint
The proofs given in low dimension have some limitations.

Basically, the averaging effect happens since any point x
within the interval [x1, xn] can be written as at least one con-
vex combination of pairs from the training set. Contradictions
may occur as illustrated above when several combinations
corresponds to x. In higher dimension such explicit contra-
dictions are not necessarily expected. Still, the more segments
we allow to interpolate, the larger becomes the virtual training
set, eventually leading to potentially smaller margins between
classes and thus to harder variance/trade-off compromises. We
will illustrate this point in the experiments.
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METHOD CIFAR-10 / Resnet18 CIFAR-100 / Resnet18 Fashion-MNIST / Densenet SVHN / LeNet
Baseline 4.98± 0.03 30.6± 0.27 6.20± 0.2 10.01± 0.15
Mixup 4.13± 0.03 29.23± 0.4 6.36± 0.16 8.31± 0.14

Local Mixup 4.03± 0.03 29.08± 0.34 5.97± 0.2 8.20± 0.13

TABLE I: Error rates (%) on CIFAR-10, Fashion-MNIST and SVHN. Values are averaged on 100 runs for CIFAR-10 and 10
runs for Fashion-MNIST and SVHN. Mean errors with their confidence intervals are given.

V. EXPERIMENTS

Our method depends on an hyperparameter α or ϵ. The value
of these parameters has been chosen for each experiments
according to the ablations studies that we provide in [22].

A. Low dimension
As stated in the introduction and [3], Mixup leads to

interpolations that may be misleading for the model. To
illustrate this effect, we consider a 2d toy dataset of two
coiling spirals where such interpolations occur frequently. The
two coiling spirals is a binary classification dataset: each
spiral corresponds to a different class. We expect to retrieve
better performance for Local Mixup compared to Mixup:
local interpolations are likely to stay in the same spiral and
therefore avoid manifold intrusion. For this experiment we use
a thresholded graph with parameter ε.

We use a fully connected neural network made of two
hidden layers with 100 neurons and ReLU function as non
linear function. For small values of ε many weights of the
graph are zero and thus the corresponding interpolations are
disregarded into the loss. This means that for a given batch
only a small proportion of samples are actually considered. To
avoid side effects, we vary the batch size so that in average the
same number of samples are used to update the parameters.
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Fig. 3: Error rate (averaged over 1000 runs) as a function of
ε for the two coiling spirals dataset. 1000 samples per class
generated with a Gaussian noise of standard deviation σ = 1.5.
Extremes correspond to Vanilla (ε = 0) and Mixup (ε > 4).

In Figure 3, we depict the evolution of the average error
rate as a function of the parameter ε. One can note the
significant benefit of Mixup and Local Mixup over Vanilla. As
expected, Local Mixup presents a minimum error rate which is
significantly smaller than Mixup’s error rate. We can note that
the minimum is reached with a value of ε smaller than the first
quantile. This means that for this dataset Mixup interpolations
given above this threshold are either useless or misleading for
the network’s training.

B. Lipschitz lower bound
To illustrate the impact of ε on the optimal Lipschitz

constant, we use the dataset CIFAR-10 [23]. In Figure 4, we

depict the evolution of Q(D) a lower bound of the Lipschitz
constant that we obtain in [22].
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Fig. 4: Evolution of Q(D) on the dataset CIFAR10. ε = 0
corresponds to Vanilla. ε = 50 corresponds to classical Mixup.

For classical Mixup we obtained Q(D) = 0.11 and for
Vanilla Q(D) = 0.073. Note that these two extremes are
reached with Local Mixup when ε = 0 and ε ≥ 50.

We observe that ε can be used to smoothly tune the lower
bound Q(D). In practice, a lower Q(D) is preferable, but
this only accounts for the optimal Lipschitz constant. Larger
values of ε lead to larger training sets and thus potentially
better generalization.

C. High dimension: Experiments on classification dataset

The previous toy dataset is particularly suitable to generate
contradictory virtual samples. We delve into more complex and
real world datasets in the following subsection to illustrate the
negative impact of some interpolations.

We tested our proposition on different classification datasets
and architectures and report the results in table 1. We consider
the datasets CIFAR-10, CIFAR-100 [23] Fashion-MNIST [24]
and SVHN [25]. Fashion-MNIST is composed of clothes
images of size 28x28 pixels (grayscale) . There are 60,000
images in the training set corresponding to 10 classes. SVHN
is a real-world image dataset made of small cropped digits of
size 32x32 pixels and 3 colors. There are 73257 digits in the
training set corresponding to 10 classes. For these tests, we
use a smooth decreasing exponential graph tuned by α.

We observed that Local Mixup showed a smaller error rate
on these datasets. For Fashion MNIST, we note that Mixup im-
pacts negatively the error rate, suggesting that on this dataset
Mixup creates spurious interpolations as discussed in [3],
which might be caused by a low intrinsic dimensionality.

For these experiments, we also tried to use a K-nearest
neighbor graph or a thresholded graph but without being able
to achieve smaller error rates compared to Mixup or even
Vanilla. This may indicate that some segments generated by
Mixup are important to act as a regularizer during training
even if some of them may generate manifold intrusions. By
tuning α, we weight the importance of this regularization.
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D. Comparaison with Adamixup

We compare our proposed approach with Adamixup, another
method presented as capable of preventing manifold intrusion.
We use the GitHub Repository of the author and we changed
only the Mixup part to implement our method. On CIFAR-10
we used 1400 epochs as well for Local Mixup and Adamixup
since the authors used this number for Adamixup. We observe
a slight advantage for Adamixup on MNIST: 0.49%±0.03 for
Adamixup, 0.54%±0.02 for Local Mixup (error rates averaged
over 10 runs). Still, on CIFAR-10 our method outperforms
Adamixup: 4.11%± 0.12 for Adamixup and 3.89%± 0.12 for
Local Mixup (averaged over 5 runs).

Note that Local Mixup does not completely discard interpo-
lations but weighs them, contrary to Adamixup that prevents
the interpolations which are considered as causing manifold
intrusions. Thus, this may indicates that even interpolated
samples causing manifold intrusion could be beneficial as long
as their are not predominant in the loss.

We also note that our method seems to converge faster on
MNIST. One benefit of our proposed approach is the simplicity
and the small number of parameters (CIFAR-10): 836522 for
Local Mixup and 11171146 for Adamixup.

VI. CONCLUSION

In this paper, we introduced a method called Local Mixup,
in which pairs of samples are interpolated and weighted in
the loss depending on the distance between them in the
input domain. This method comes with a hyper-parameter that
allows to provide a continuous range of solutions between
Vanilla and classical Mixup. Using a simple framework, we
showed that Local Mixup can control the bias/variance trade-
off of trained models. In more general settings, we showed that
Local Mixup can tune a lower bound on the Lipschitz constant
of the trained model. We used real world datasets to prove
the ability of Local Mixup to achieve better generalization, as
measured using the test error rate, than Vanilla and classical
Mixup.

Overall, our methodology introduces a simple way to in-
corporate locality notions into Mixup. We believe that such
a notion of locality is beneficial and could be leveraged to
a greater level in future work, or could be incorporated to
the various Mixup extensions that have been proposed in
the community. In future work, we would like to investigate
further the choice of the graph, the choice of the hyper-
parameter that comes with it, and trainable versions of Local
Mixup. We would like to rely on quantitative information
given on the topology such as the histogram of the distance
or persistence diagrams [26] to tune these hyper-parameters.
There are also many possibilities to improve over using the
Euclidean metric, in particular the pullback metrics given by
the Euclidean distance between the samples once in the feature
space corresponding to the penultimate layer. Extending the
theoretical results to more general contexts would definitely
allow to gain intuition on the effect of locality on Mixup.
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