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Abstract—Tensors are multidimensional data structures used
to represent many real world data. In the context of supervised
learning, Support Vector Machines (SVMs) are known to be very
efficient for different classification tasks. In this work, we propose
a kernel metric for SVM to deal with non linear classification
problems. First, we use the Tensor Train Decomposition (TTD)
to decompose a tensor into TT-cores of order three and two
matrices. In order to mitigate the problem of non-uniqueness
of TTD, we propose a kernel based on the tensorial singular
subspaces spanned by TT-cores. The TT-based kernel function
proposed is based on the tools of t-Algebra of 3-rd order tensors.
We also show that it is possible to use different kernel functions
on each TT-core. Numerical experiments on real-world datasets
show the competitivity of our approach compared to existing
methods and the superiority of our method when dealing with
few-sample of high-dimensional inputs.

Index Terms—Tensor Train Decomposition, subspaces, kernel

I. INTRODUCTION

Tensors are seen as multidimensional extensions of matrices
represented by multidimensional arrays. The order of a tensor
is defined as the number of its dimensions. For example, a
scalar is a first-order tensor, a matrix is a 2-order tensors, 3-rd
order tensors are represented as cubes, etc.
Different works extended Support Vector Machines (SVMs)
to tensor data. For instance, DuSK [1] uses the Canonical
Polyadic Decomposition (CPD) to decompose input tensors
and proposes a kernel function on the decomposition to treat
non linear classification problems. However, this method uses
the ALS (Alternating Least Squares) algorithm for computing
the CPD that is not guaranteed to converge to a global mini-
mum [2], and because of the ambiguities of the CPD model,
this method suffers from low accuracy scores. Signoretto et
al. method [3] proposes a Grassmannien tensor-based kernel.
Specifically, it defines a kernel function by considering the
matrix-based subspaces spanned by factors of the HOSVD
(Higher-Order Singular Value Decomposition). Recently, the
method KSTTMs [4] proposes a kernelized support tensor
train machines. Based on the TTD, the author propose a kernel
metric based on kernel mappings on the different fibers of
TT-cores. However, since TTD is not unique (cf. sec I-C2),
the formula of the kernel function in [4] may suffer from
ambiguities. To overcome this, we propose the following

methodology. First, we use the Tensor Train Decomposition
(TTD) that is one of the simplest tensor network and is able
to mitigate the curse of dimensionality [5]. Furthermore, it has
proven to be efficient in removing redundant data and provides
a compact representation [6]. Next, in order to address the
problem of non-unicity of the TTD, our approach consists on
defining a kernel function w.r.t the subspaces generated by the
cores of TTD using the powerful tools of tensor algebra of
3-rd order tensors proposed in [7], [8]. The superiority of our
method is validated through different experiments.
The rest of the paper is organised as follows. We first
present some preliminaries that contains some tensors basics,
a backgroung in t-Algebra and an overview of SVMs in the
tensor case in section I-D. We formulate our proposed method
in section II and validate our approach through numerical
experiments in section III.

A. Tensors basics

1) Notations and definitions: The notations used through
this paper are the following: Vectors, matrices and tensors are
represented by x, X and X . The (i1, i2, · · · , iQ)-th entry of
the Q-order tensor X is denoted by X (i1, i2, · · · , iQ).
Definition (Inner product): The inner product of two Q-order
tensors X ,Y ∈ RI1×···×IQ is defined as:

⟨X ,Y⟩ =
I1∑

i1=1

I2∑
i2=1

· · ·
IQ∑

iQ=1

X (i1, . . . , iq)Y(i1, . . . , iq).

Definition (Tensor Frobenius Norm): The norm of a tensor X
is defined as:

||X ||F =

√√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IQ∑

iQ=1

X 2(i1, . . . , iq).

Definition (Tensor contraction): The contraction product ×p
q

between two tensors X and Y of size I1 × · · · × IQ and J1 ×
· · ·×JP respectively with Iq = Jp is a tensor of order Q+P−2
such as:
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Horizontal:
X (i, :, :)

Vertical:
X (:, j, :)

Frontal:
X (:, :, k)

Tubal:
X (i, j, :)

Fig. 1: Slices of a tensor X of order-3.

(X ×p
q Y)(i1, . . . , iq−1, iq+1, . . . , iQ, j1, . . . , jp−1, jp+1, . . . , jP )

=

Iq∑
k=1

X (i1, . . . , iq−1, k, iq+1, . . . , iQ)

Y(j1, . . . , jp−1, k, jq+1, . . . , jQ).

B. Background in t-Algebra

In this section, we present some tensor operations between
3-order tensors proposed in [7], [8].
Slices are defined as two-dimensional sections of a tensor.
They are found by fixing all indices but two. A 3-rd order
tensor X has horizontal, lateral and frontal slices denoted by
X (i, :, ; ), X (:, j, ; ) and X (:, :, k). This later will be denoted
as Xk. Tubes are the generalization for higher-order tensors
of columns and rows of a matrix. They are found by fixing
all indices but one.
Figure 1 shows the different slices and tubes of a 3-order
tensor.

A block circulant matrix of a tensor is defined using its
frontal slices. The block circulant matrix circ(X ) of a 3-rd
order tensor X of size I1 × I2 × I3 is defined as :

circ(X ) =


X1 XI3 XI3−1 · · · X2

X2 X1 XI3 · · · X3

...
. . . . . . . . .

...

XI3 XI3−1
. . . X2 X1


The MatV ec operation takes a 3-rd order tensor as input X of
size I1× I2× I3 and returns a block matrix of size I1I3× I2:

MatV ec(X ) = [XT
1 , · · · , XT

I3 ]
T .

The fold operation takes back MatV ec(X ) to its tensor form:

fold(MatV ec(X )) = X .

Definition (Block diagonal matrix): Let X ∈ RI1×I2×I3 . The
block diagonal matrix of X contains the frontal slices of X in
its diagonal as follows:

bdiag(X ) =


X1

X2

. . .
XI3



Definition (T-product): Let X be I1×l×I3 and Y be l×I2×
I3. Then, the t-product X ∗ Y is a tensor of size I1 × I2 × I3
defined as:

X ∗ Y = fold(circ(X )MatV ec(Y)). (1)

It shall be noted that the computation of the t-product in (1)
demands a high-computationnal cost. In practice, the t-product
is computed using the Discret Fourier Transform (DFT), reader
can see [7] for more details.

Definition (T-transpose): For a tensor X of size I1× I2× I3,
its transpose X T is a tensor of size I2 × I1 × I3 obtained
by transposing the frontal slices X (:, :, k) and reversing their
order from 2 through I3.

Definition (Identity tensor): The identity tensor IIIJ is a
tensor whose first frontal slice is the identity matrix II and
whose all other frontal slices are zeros.

Definition (Tensor inverse) : A tensor X of size I × I × J
has an inverse X−1 if:

X ∗ X−1 = X−1 ∗ X = I.

Definition (Orthogonal tensor): A real tensor of size I×I×J
is orthogonal if:

X T ∗ X = X ∗ X T = I.

Definition (F-diagonal tensor): A tensor is f-diagonal if each
of its frontal slices is a diagonal matrix.

Definition (Tubal scalar): An element c ∈ R1×1×n is called
a tubal scalar of length n.

Definition (Range): The range of a tensor X is the t-linear
span of the lateral slices of X :

span(X ) = { X1 ∗ c1 + · · ·+XI3 ∗ cI3 , ck ∈ R1×1×I3}.

Definition (T-svd): Let X a I1×I2×I3 be a real-tensor. Then,
X can be decomposed as:

X = U ∗ S ∗ VT ,

where U and V are orthogonal tensors of size I1×I1×I3 and
I2×I2×I3 respectively and S is f -diagonal. Specifically, each
frontal slice of S is diagonal and its diagonal elements are in a
decreasing order generalizing the notion of singular values of
matrices to tensors. The number of nonzeros singular values
of S defines its tubal rank.
Remark: As proven in [8], if X = U ∗S ∗VT , then, the lateral
slices of U form an orthonormal basis for the range of X i.e,
we have:

span(X ) = span(U), (2)

and their dimension is equal to the tubal rank of X .
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Fig. 2: TTD of a Q-order tensor with TT-ranks
(R1, · · · , RQ−1).

Definition (Projector): P is a projector if P2 = P ∗ P = P .
If X ∈ span(P ), then P ∗ X = X .

Definition (Pseudo-inverse): For a tensor X ∈ RI1×I2×I3

whose frontal slices are full column rank with I2 < I1, we
define its pseudo-inverse as :

X † = (X T ∗ X )−1 ∗ X T .

In this case, P = X ∗ X † is an orthogonal projector onto the
range of X .

C. Tensor train decomposition (TTD)

TTD is one of the simplest tensor network and is able to
mitigate the curse of dimensionality [6]. It decomposes a Q-
order tensor into a graph (train) connected of (Q− 2) tensors
of order 3 and 2 matrices. TTD is represented graphically in
Figure 2. The nodes of this graph represent a tensor whose
order is denoted by the number of edges. The number beside
the edges is the TT-rank and the connection between two
tensors correponds to the contraction product.

1) Definition: A tensor X ∈ RI1×...×IQ admits a TTD with
TT-ranks (R1, . . . , RQ−1) if it can be expressed as:

X (i1, . . . , iQ) =

R1∑
r1=1

. . .

R2∑
r2=1

RQ−1∑
rq−1=1

G1(i1, r1)G2(r1, i2, r2)

. . .GQ−1(rQ−2, iQ−1, rQ−1)GQ(rQ−1, iQ),

where Gq ∈ RRq−1×Iq×Rq for 2 ≤ q ≤ Q− 1, G1 ∈ RI1×R1

and GT
Q ∈ RIQ×RQ−1 are the TT-cores. In the tensor format,

TTD can be formulated using the contraction product between
TT-cores as follows:

X = G1 ×1
2 G2 ×1

3 G3 ×1
4 · · · ×1

Q−1 GQ−1 ×1
Q GQ. (3)

Recall that the number of entries in the raw data Q-order cubic
(I) tensor grows exponentially with respect to the tensor order.
This means that to store X directly, O(IQ) entries needs to
be stored. However, if only the decomposition of X is stored
instead, i.e, its TTD, only O(QIR2) is required (as each core
has IR2 components. This clearly shows that TTD mitigates
the curse of dimensionality.

2) Non uniqueness of TTD: It shall be noted that TTD is
not unique [9]. In fact, X can be written in a TTD format
using different cores than those in eq. (3) as follows:

X = A1 ×1
2 A2 ×1

3 A3 ×1
4 · · · ×1

Q−1 AQ−1 ×1
Q AQ, (4)

where,

A1 = G1M
−1
1

AQ = M−1
Q−1GQ

Aq = Mq−1 ×1
2 Gq ×1

3 Mq

where Mq are nonsingular matrices of dimension Rq ×Rq .
In order to treat all the TT-cores of a tensor in the same
manner, we add a third dimension to the matrices in the TTD
that will be equal to 1. Hence, all TT-cores will be denoted
by a calligraphic notation Gq for q ∈ {1, . . . , Q}.
In the next section, we will review the problem formulation
of the extension of the standard SVMs to the tensorial case a
as well as the use of kernel methods to deal with non linear
classification problems.

D. Support Vector Machines in the tensorial case
Let us consider a binary classification problem where the

dataset is composed of M Q-order tensors Xm ∈ RI1×···×IQ

labeled with ym ∈ {−1, 1}. This classification problem is
said to be linearly separable if its decision function has the
following form:

f(X ) = sgn (⟨W,X⟩+ b) , (5)

where W ∈ RI1×...×IQ is a Q-order tensor of weights and b
is the bias and where ”sgn” denotes the sign function.
In order to estimate W and b, a generalization of the SVM
formulation problem was introduced in several works such as
in [1] as follows:

min
W,b,ξ

1

2
||W||2F + C

M∑
m=1

ξm,

subject to ym(⟨W,Xm⟩+ b) ≥ 1− ξm,

ξm ≥ 0, 1 ≤ m ≤ M,

(6)

where ξm is the error of the m-th training example of the
dataset and C is the trade-off between misclassification error
and the classification margin.
When the dataset is non linearly separable, the previous formu-
lation of SVM is no longer adapted, hence the idea of kernel
methods is to represent the dataset in a high-dimensional pre-
Hilbert space usually named the feature space in which the
dataset is linearly separable. Following the scheme of the
kernel trick for conventional SVMs, the projection of data in
the feature space is done via an implicit feature map:

Φ : Xm → Φ(Xm) ∈ RH1×···×HQ .

The constraints in eq. (6) expressed in the feature space can
be written as [1]:

ym(⟨W,Φ(Xm)⟩+ b) ≥ 1− ξm. (7)

After solving the dual problem of eq. (6) in the feature space
taking account the constraints in eq. (7), the decision function
eq. (5) can be expressed as follows [1] :

f(X ) = sgn

(
M∑

m=1

αmym⟨Φ(Xm),Φ(X )⟩+ b

)
, (8)
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where αm is the m-th Lagrangian variable.
In general, the feature map Φ is unknown, only the inner
product of the projection of the couple (Φ(Xm),Φ(Xn)) is
required which is given by k(Xm,Xn) where k is a symmetric
positive definite function k named kernel function. Therefore,
the decision function eq. (8) can be expressed using the kernel
function as:

f(X ) = sgn

(
M∑

m=1

αmymk(Xm,X ) + b

)
. (9)

In the next section, we demonstrate the TT-based feature
mapping approach.

II. PROPOSED METHOD

Our approach consists on defining a tensorial kernel
using TTD based on sub-kernels defined on TT-cores. One
can think about using traditional kernels on the vectorized
version of TT-cores. However, as TTD is not unique (cf.
section I-C2), this can badly affects the performance of the
classification task. For example, comparing two tensors via
their non-unique decomposition will lead to compare cores
that are not similar, e.g in eq. (4) where Gq and Aq are quite
different. In order to mitigate this issue, we consider learning
on the subspaces they generate as Gq and Aq span the same
subspaces and is therefore more robust.
In the following, we demonstrate the proposed TT-based
feature mapping approach. We consider in our approach
mapping the subspace span(Gq) of each TT-core Gq in the
tensor feature space using a mapping Φq . This mapping is
also unknown and similarly to Φ, is mainly used for technical
consideration. It will be removed via a kernel trick, using
only kernels in the next equations. Next, we represent our
approach to compute the inner product between TTDs in the
feature space using inner products of projectors of TT-cores.
Let X ,X ′ ∈ RI1×···×IQ with {Gq}q∈{1,...,Q} and
{G′

q}q∈{1,...,Q} being respectively the sets of TT-cores
of X and X ′. Assume Φ(X ),Φ(X ′) ∈ RH1×···×HQ . Their
inner product can be computed as :

⟨Φ(X ),Φ(X ′)⟩ =
Q∏

q=1

⟨Φq(span(Gq)),Φq(span(G′
q))⟩, (10)

From the kernel trick we have,

⟨Φq(span(Gq)),Φq(span(G′
q))⟩ = kq(span(Gq), span(G′

q)),
(11)

where kq can be any kernel function used for a standard SVM
such as a Gaussian kernel, polynomial kernel, linear kernel,
etc.
Combining eq. (10) and eq. (11), we obtain the corresponding
TT-based kernel function:

k(X ,X ′) =

Q∏
q=1

kq(span(Gq), span(G′
q)) (12)

Dataset DuSK K-STTM Our approach
UCF11 0.54(10−2) 0.93(10−2) 0.96(10−2)

Extended 0.33(10−2) 1.0(0) 1.0(0)
Faces96 0.33(10−2) 0.9(10−2) 1.0(0)

TABLE I: Average accuracy scores of different models on
different datasets: mean(standard deviation)

TT-ranks [1, 1, 1, 1, 1] [1, 2, 1, 1, 1] [1, 3, 2, 3, 1] [1, 3, 3, 3, 1]
UCF11 0.96(10−2) 0.93(10−2) 0.87(10−2) 0.81(10−2)

Extended 1.0(0) 1.0(0) 1.0(0) 0.96(10−2)

TABLE II: Accuracy scores of our approach on different
datsets w.r.t different values of TT ranks.

A popular choice for kq that gives rise to a positive definite
kernel is given by:

kq(span(Gq), span(G′
q)) = exp

(
−γ sin2 (θq)

)
, (13)

where γ > 0 and θq is the principal angle between span(Gq)
and span(G′

q). It should be noted that despite θq being the
geodesic distance in the Grassman manifold between the two
subspaces, the expression sin(θq) is considered instead, mak-
ing the kernel kq definite positive (therefore, SVM methods
can be used for classification) [10]. Readers can refer to [10]
for explicit ways of computing the principal angles. In our
case, it is possible to directly use the projectors. For that, we
first compute the t-svd of Gq and G′

q as follows:

Gq = Uq ∗ Sq ∗ VT
q ,

G′
q = U ′

q ∗ S ′
q ∗ V ′T

q ,

In this work, we choose to use a gausssian kernel for
subkernels kq . In this case, the final expression of the kernel
proposed in our approach is given by:

k(X ,Y) =

Q∏
q=1

exp

(
−γ
∣∣∣∣∣∣Uq ∗ UT

q − U ′
q ∗ U ′T

q

∣∣∣∣∣∣2
F

)
. (14)

III. EXPERIMENTS

We evaluate our approach on different real-world datasets
and compare it to three state of the art methods as a baseline. It
shall be noted that the SVM approach presented in the previous
section is defined for a binary classification problem. In the
case of multiclass problem, a one-vs-rest approach is utilised.

A. Datasets

• UCF11 dataset: This dataset [11] contains 1600 video
clips belonging to 11 human actions such as: diving,
trampoling jumping, walking, shooting... We consider the

TT-ranks [1, 3, 3, 1, 1] [1, 3, 2, 1, 1] [1, 3, 1, 1, 1] [1, 2, 3, 2, 1]
KSTTM 0.6(10−2) 0.9(10−2) 0.4(10−2) 0.5(10−2)

Our approach 1.0(0) 1.0(0) 1.0(0)) 1.0(0)

TABLE III: Accuracy scores of KSTTM and our approach on
the Faces96 dataset w.r.t different TT-ranks.
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Method DuSK KSTTM our approach
UCF11 1879 130 148

Extended 279 18 34.9
Faces96 0.4 0.32 0.32

TABLE IV: Computationnal time of different methods on the
three real-world datasets considered.

first 240 frames from each clip video to have a consistent
size between all samples. The resolution of each RGB
frame is 320× 240. These clip videos can be interpreted
as tensors of order 4 with dimensions 240×240×320×3.
A total of 109 tensors with these dimensions are present
in each of these 11 classes.

• Extended Yale dataset B: This dataset [12] contains 28
human subjects. For each subject, there are 576 images
of size 480×640 taken under 9 poses. Each pose is taken
under 64 different illuminations. Hence, each subject is
represented by a tensor of size 9× 480× 640× 64.

• The Faces96 dataset. This dataset contains 2261 images
in JPG format of 119 persons. This images are of size
196 × 196 × 3 and taken under different positions from
the camera. In our experiments, we consider the first
16 positions from each subject so that each subject is
represented by a tensor of size 16× 196× 196× 3.

B. Classification performance

• Table I shows the classification results of different mod-
els. Here, a grid search has been realized on possible
ranks, from [1,1,1,1] to [3,3,3,3]. Only the best scores
are presented here. This scores are obtained by training
on 50% of data and testing on the rest. This procedure
is repeated 5 times and the mean scores with standard
deviation are reported in Table I. We notice that the
DuSK method has low accuracy scores due to its failure
to manage the non uniqueness of CPD and finding a
good rank. KSTTM achieves comparable results with
our approach whereas our approach achieves the best
performance.

• In order to see the influence of the TT ranks on the
accuracy scores of our approach, we test different values
in Table II. We notice that our approach achieves high
accuracy scores on different values of TT-ranks. Hence,
we can use small TT-ranks for reduction of the calculation
costs. However, we remark that KSTTM is very sensitive
to the choice of TT-ranks. This is clearly observed in
Table III. In fact, for various values of TT-ranks, KSTTM
does not achieve good accuracy scores.

• Table IV shows time computation of different models on
different datasets. DuSK method is very costly because
of the ALS (alternating least squares) algorithm. KSTTM
reaches good results in terms of time computation. Our
approach achieves reasonnable results in terms of com-
plexity while being robust to the choice of TT-ranks.

IV. CONCLUSION

In the context of supervised learning of higher-order tensors,
we have proposed in this work a new extension of SVMs
to high-order tensors that deals with non linear classification
problems. Based on the Tensor Train Decomposition (TTD),
we have defined a new way to derive a kernel function on
the tensor space and have shown that we can use different
kernel functions on each TT-core. In order to overcome the
non-unicity of TTD, our kernel function is defined using the
subspaces generated by TT-cores. This is realised using tools
of t-Algebra for 3-rd order tensors. Finally, we have shown that
our approach achieves better performance on different real-
world datasets considered.
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