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Abstract—Activation functions (AF) are necessary components
of neural networks that allow approximation of functions, but
AFs in current use are usually simple monotonically increasing
functions. In this paper, we propose trainable compound AF
(TCA) composed of a sum of shifted and scaled simple AFs. TCAs
increase the effectiveness of networks with fewer parameters
compared to added layers. TCAs have a special interpretation
in generative networks because they effectively estimate the
marginal distributions of each dimension of the data using
a mixture distribution, reducing modality and making linear
dimension reduction more effective. When used in restricted
Boltzmann machines (RBMs), they result in a novel type of RBM
with mixture-based stochastic units. Improved performance is
demonstrated in experiments using RBMs, deep belief networks
(DBN), projected belief networks (PBN), and variational auto-
encoders (VAE).

I. INTRODUCTION

A. Background and Motivation

Activation functions (AF) are neccessary components of

neural networks that allow approximation of most types of

functions (universal approximation theory). Activation func-

tions in current use consist of simple fixed functions such as

sigmoid, softplus, ReLu [1], [2], [3], [4]. There is motivation

to find more complex AFs for machine learning, such as

parametric Relu, to improve the ability of neural networks to

approximate complex functions or probability distributions [5].

Putting more complexity in activation functions can increase

the function approximation capability of a network, similar to

adding network layers, but with far fewer parameters.

B. Theoretical Justification

Most approaches to selecting AFs focus on the end re-

sult, i.e. performance of the network [1]. It may be more

enlightening to ask what does the AFs say about the input

data. Any monotonically increasing function can be seen as an

estimator of the input distribution [6]. This view that AFs are

PDF estimators can be best described mathematically with the

change of variables theorem. Let the AF be written y = f(x)
and let us assume that y is a random variable with distribution

py(y). Then, the distribution of x is given by

px(x) =

∣

∣

∣

∣

∂y

∂x

∣
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∣

py(f(x)) = |f ′(x)| py(f(x)). (1)
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If y has the uniform distribution on [0, 1], then

px(x) = |f ′(x)| . (2)

The activation function f(x) can be used as a probability

density function (PDF) estimator if it is adjusted (trained) until

y has a uniform output distribution, so that (2) holds. Training

is accomplished by maximum likelihood (ML) estimation

using

max
θ

1

K

{

K
∑

i=1

log f ′(xk; θ)

}

, (3)

where k indexes over a set of training samples xk, and we

have removed the absolute value operator because we assume

f(x; θ) is monotonically increasing, so f ′(x; θ) > 0. In

accordance with (2), the trained AF will have increasing slope

in regions where the input data x is concentrated, with the net

result being that the output has a uniform distribution. This

concept is illustrated in Figure 1.

A similar argument can be made for a Gaussian output

distribution, where py(y) =
1√
2π

e−y2/2. Then,

px(x) = |f ′(x)| 1√
2π

e−f(x)2/2. (4)

Training f(x) will then result in py(y) approaching the Gaus-

sian distribution. Some confusion may arise because we are

discussing two different distributions of y, the true distribution

based on knowing px(x), obtained by inverting (1) given by

py(y) =
px(x)
|f ′(x)| , and the assumed distribution. The purpose of

training f(x) is to make the true distribution of y approach the

assumed distribution. In general, the slope of f(x) will tend

to increase where the histogram of x has peaks, serving to

remove modalities in the data as illustrated in Figure 1, as the

activation function approximates the cumulative distribution of

the input data.

The view that f(x) is a PDF estimator, and the fact that data

often has clusters leads us to the idea of creating AF’s with

multi-modal derivatives. One of the simplest and earliest types

of AFs is the sigmoid function, whose derivative approximates

a Gaussian distribution. Therefore, the sum of shifted sigmoid

functions approximates a Gaussian mixture, which is a popular

approach to PDF estimation [7], [8]. This view leads us to the

idea for the trainable compound activation functions (TCA).
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Fig. 1. Illustration of an activation function removing modality in data when
the derivative approximates the histogram.

C. Contributions and Goals of Paper

In this paper, we propose TCA, a trainable activation

function with complex, but monotonic response. We argue that

using a TCA in a neural network, is a more efficient way

to increase the effectiveness of a network than adding layers.

Furthermore, in generative networks, the TCA has an interpre-

tation as a mixture distribution and can remove modality in the

data. When the TCA is used in a restricted Boltzmann machine

(RBM), it creates a novel type of RBM based on stochastic

units that are mixtures. We show significant improvement of

TCA-based RBMs, deep belief network (DBN) and projected

belief networks (PBNs) in experiments.

II. TRAINED COMPOUND ACTIVATION FUNCTION (TCA)

Consider the compound activation function f(x) given by

f(x) =
1

M

M
∑

k=1

fk (e
akx+ bk) , (5)

where the functions fk(x) are simple activation functions, and

a = {ak} and b = {bk} are scale and bias parameters.

The exponential function eak is used to insure positivity

of the scale factor. Note that if fk(x) are monotonically

increasing functions (which we always assume), then the TCA

is monotonically increasing.

For a dimension-N input data vector x, the TCA operates

element-wise, so y = f(x) means:

yi =
1

M

M
∑

k=1

fk

(

ea(i,k)xi + b(i, k)
)

, 1 ≤ i ≤ N, (6)

where A = {a(i, k)} and B = {b(i, k)} are N ×M scale and

bias parameters. An alternative way to implement the function

of a TCA would be with an additional structured dense layer

that expands the dimension to N · M neurons, followed by

a linear layer that averages over each group of M neurons,

compressing back to dimension N . But, not only does a TCA

use a factor of N fewer parameters, but it has an interpretation

as a mixture distribution when used in generative models, and

results in a novel type of RBM, as we now show.

III. TCA FOR DEEP BELIEF NETWORKS (DBN)

A deep belief network is a layered network proposed by

Hinton [9] based on restricted Boltzmann machines (RBMs).

A. RBMs

The RBM is a widely-used generative stochastic artificial

neural network that can learn a probability distribution over its

set of inputs [10]. The RBM is based on an elegant stochastic

model, the Gibbs distribution, and is the central idea in a DBN

made popular by Hinton [9]. A cascaded series of layer-wise-

trained RBMs can be used to initialize deep neural networks.

This method, in fact played a key role in the birth of deep

learning because they provided a means to pre-train deep

networks that suffered from vanishing gradients.

B. Review of RBMs

The RBM estimates a joint distribution between an input

(visible) data vector x ∈ R
N , and a set of hidden variables

h ∈ R
M . The RBM consists of a pair of stochastic percep-

trons, arranged back-to-back, and is illustrated in Figure 2. In

Ma

a 1

β 1

β N

x1

x
N

x1

x
N

h1

hM

hM

h1

β Wi,j

Wi,j 1b

Mb

Restricted Boltzmann Machine (RBM)

αM

α1
α

αp(h;    )

p(h;    )

Σ
−1

FORWARD  DIRECTION

BACKWARD  DIRECTION

p(x;    )

βp(x;    )

Fig. 2. Illustration of an RBM.

a sampling procedure called “Gibbs sampling”, data is created

by alternately sampling x and h using the conditional distribu-

tions ph(h|x) and px(x|h). To sample h from the distribution

ph(h|x), we first multiply x by the transpose of the N ×M

weight matrix W, and add a bias vector: α = W′x+b. The

variable α is then applied to a generating distribution (GD) to

create the stochastic variable h as hi ∼ p(h;αi), 1 ≤ i ≤ M .

Note that conditioned on x, h is a set of independent random

variables (RV). To sample x from the distribution px(x|h), we

use the analog of the forward sampling process: β = Wh+a.

The variable β is then applied to a generating distribution

xj ∼ p(x;βj), 1 ≤ j ≤ N . Conditioned on h, x is a set

of independent random variables (RV). After many alternating

sampling operations, the joint distribution between x and h

converges to the Gibbs distribution p(x,h) = e−E(x,h)

K , where

the normalizing factor K is generally unknown. Training an

RBM is done using contrastive divergence, which is described

in detail for exponential-class GDs in [11].
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C. Activation functions and RBMs

Once an RBM is trained, it can be used as a layer of a neural

network to extract information-bearing features h. This is done

by replacing stochastic sampling with deterministic sampling

by replacing the stochastic generating distributions p(x;β),
p(h;α) with activation functions that equal the expected value

(mean) of the generating distributions, f(α) = E(x;α).
Consider the Bernoulli distribution whose AF is the sigmoid

function, the truncated exponential distribution (TED) whose

AF is the TED distribution [12], the truncated Gaussian

distribution (TG) whose AF is the TG activation [13], and

the Gaussan distribution which has the linear AF f(x) = x.

D. RBMs based on TCA

If a simple activation function corresponds to the expected

value of the GD, then what distribution corresponds to a TCA?

It is previously known that any monotonically-increasing func-

tion can be seen as a sum of shifted stochastic generating

distributions [14], [2]. But, we must look more carefully at this

because it is not as simple as adding random variables. When

adding random variables, the probability densities combine

by convolution, not additively. To combine them properly, we

need a mixture distribution. Let pk(x;α), where 1 ≤ k ≤ M

be a set of M univariate GDs depending on parameter α, and

let these GDs have mean fk(α) =
∫

x
x pk(x;α)dx. Then,

fk(α) is the AF corresponding to GD pk(x;α). The M GDs

do not need to be unique, and can be all the same. Let Φk(x;α)
be the cumulative distribution function (CDF) of pk(x;α) , i.e.

Φk(x;α) =

∫ x

−∞
pk(x;α) dx.

Now, consider the mixture distribution

p(x;α) =
M
∑

k=1

1

M
pk (e

akα+ bk) . (7)

To draw a sample from mixture distribution (7), we first draw

a discrete random variable k uniformly in [1, M ], then draw

x from distribution e−akpk (e
akα+ bk). Mixture distribution

(7) has CDF

Φ(x;α) =
1

M

M
∑

k=1

e−akΦk (e
akα+ bk) . (8)

It is easily seen by taking the derivative, that distribution

corresponding to the CDF (8) is (7). And, since expected

value is a linear operation, the mean of distribution (7) is the

TCA (5). Note that RBMs are implicitly an infinite mixture

distributions over the hidden variables [15], but using using

discrete mixture φ(x;α) for a generating distribution creates

an entirely novel type of RBM.

Different AFs (i.e. different stochastic units) can be used for

the input and output, producing a wide range of different types

of RBMs [13]. Figure 3 illustrates an RBM constructed using

a TCA unit in the forward path. The activation functions and

TCAs in the figure can be either stochastic (random sampling

from the corresponding GD) or deterministic if the activation

functions are used. In the forward path, a weight matrix W

multiplies the input data vector x in order to produce a linear

feature vector, which is then passed through the TCA to

produce the hidden variables vector h. In the backward path, h

is multiplied by the transposed weight matrix W′ and passed

through an activation function to produce the re-sampled input

vector x. In our approach, we use a TCA only in the forward

path, with a normal AF in the backward path.

The mathematical approach to train the parameters of RBMs

using the contrastive divergence (CD) algorithm is well doc-

umented [11] and can be extended in order to obtain the

updates equations to train the parameters of the TCAs. This

is facilitated using the symbolic differentiation available using

software frameworks such as THEANO [16].
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Fig. 3. Illustration of an RBM based with TCA units in the forward path. The
need for a separate bias in the forward path is eliminated due to the existance
of trainable bias (shifts).

IV. STACKED RBM AND DBNS

To create a “stacked RBM”, an RBM is trained on the

input data, and then the forward path is used to create hidden

variables, which are then used as input data for the next layer.

The DBN [9] consists of a series of stacked RBMs, plus a

special “top layer” RBM. The one-hot encoded class labels are

injected at the input of the top layer (concatenated with the

hidden variables from the last stacked RBM). Then, the Gibbs

distribution of the top layer learns the joint distribution of the

class labels with the hidden variables out of the last stacked

RBM. The cleverness of Hinton’s invention lies in the fact that

although the scale factor of the the Gibbs distribution is not

known, it is not needed to compare the likelihood function

from the competing class hypotheses. Computing the Gibbs

distribution for a given class assumption has been called the

“free energy” [9], [13], so we will call this a free energy

classifier. Computing the free energy classifier requires solving

for terms of the marginalized Gibbs distribution [13], and these

in turn require the CDF, which we have given in (8). We
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therefore have all the tools to create a DBN using TCA-based

stochastic units.

V. EXPERIMENTS: TCA-BASED RBM AND DBN

A. Data

For the these experiments, we took a subset of the MNIST

handwritten data corpus, just three characters “3”, “8”, and

“9”. The data consists of sample images of 28× 28, or a data

dimension of 784. We used 500 training samples from each

character. Since MNIST pixel data is coarsely quantized in the

range [0,1], a dither was applied to the pixel values1.

B. Network

The network was a 1-layer stacked RBM of 32 neurons,

followed by a top-level (classifier) RBM of 256 units. TCA’s

with 3 components were used in the forward path. The trun-

cated exponential distribution (TED), which is the continuous

version of the Bernoulli distribution/sigmoid function [12],

[13], was used for all activation functions and stochastic units.

C. First Layer

In the first experiment, we trained just the first layer RBM

and measured input data reconstruction error after one Gibbs

sampling cycle. We consider both mean-square error and con-

ditional likelihood function (LF) which is log p(x|β), where

β is the input to the activation functions in the reconstruction

path (see Figure 3).

We trained in three phases, (a) no TCA (using just a TED

AF), then (b) with TCA but with TCA update disabled, then

finally (c) with TCA enabled. At initialization, the TCAs have

a transfer function very similar to a simple TED AF (base

AF), so with TCA update disabled, we should expect the same

performance as for the base AF. Training was done using

contrastive divergence [11], [9]. For the first layer, we used

deterministic Gibbs sampling (using AF instead of stochastic

units). When switching from phase (b) to (c), we plotted the

MSE as a function of epochs. In Figure 4, the plot begins

where phase (b) has reached convergence, then at X axis -2.25,

the TCA training is enabled and a drastic change is seen. In

Table I, we listed the final MSE and LF for the three phases.

Nearly a factor of 2 reduction in MSE is seen. The improved

reconstruction of TCA can be seen on the bottom row.

D. DBN performance

The output of the first layer (using TCA) was applied to the

second layer, with one-hot encoded labels injected, forming

a DBN. We then trained the second layer using contrastive

divergence (CD) with three Gibbs iterations and an added term

of direct free energy (FE) cost function as proposed in [13].

Finally, the entire network was fine-tuned using the up-down

algorithm, which is an extension of CD to the entire deep

belief network [9]. The TCA was initialized so that it has a

characteristic similar to the base (TED) activation. Then at

1For pixel values above 0.5, a small exponential-distributed random value
was subtracted, but for pixel values below 0.5, a similar random value was
added.

Fig. 4. First layer mean square re-
construction error (MSE) as a func-
tion of training epoch with log-time
in X-axis. After convergence at X-
axis location -2.15, the TCAs were
allowed to change.

AF MSE LF

TED .0135 -7.0

TCA-0 .0134 -7.0

TCA .0029 -2.59

TABLE I
MSE AND CONDITIONAL LF FOR

FIRST LAYER ONLY. TCA-0:
INITIAL (BUT NOT UPDATED)

TCA.

Fig. 5. Training profile for the up-down algorithm where it can be seen that
when enabling TCA, both reconstruction error and validation classfier errors
decrease suddenly. The X-axis is minus the log of the number epochs in the
past. Errors are on 1500 validation samples.

some point, we enabled TCA training. In Figure 5, it can be

see at X-axis -2.1, that TCA training was enabled, resulting

in a sudden improvement of both reconstruction error number

of and classifier errors measured on separate validation data.

VI. TCA FOR PROJECTED BELIEF NETWORK AND

AUTO-ENCODERS

A. Description

The projected belief network (PBN) is a generative network

that is based on PDF estimation, a direct extension of (2), (4)

to dimension-reducing transformations [6], so it is the ideal

paradigm to test the concepts of TCA. The PBN is based

on the idea of back-projection through a given feed-forward

neural network (FFNN), a way to reconstruct or re-sample

the input data based on the network output [17]. There are

both stochastic and deterministic versions of the PBN [18].

In the stochastic PBN, a tractable likelihood function (LF) is

computed for the FFNN, and inserting a TCA into the FFNN

applies a term to the LF corresponding to the derivative of the

TCA, which is a mixture distribution. The deterministic PBN

(D-PBN) operates similarly, but is trained not to maximize the

LF, but to maximize the conditional LF (given the network

output), which is a probabilistic measure of the ability to

reconstruct the input data. The D-PBN can be seen as an

auto-encoder (AEC), so we will compare it with standard auto-

encoders. We used the same data as in Section V-A.
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Algorithm TCA MSE(train) MSE(test)

AEC No .02024 .02273

AEC Yes .01884 .02403

VAE No .02220 .02509

VAE Yes .01835 .02179

D-PBN No .01917 .01955

D-PBN Yes .01790 .01790

TABLE II
MEAN SQUARE RECONSTRUCTION ERROR FOR VARIOUS AUTO-ENCODERS.

B. Network

The network which is illustrated in Figure 6 had two dense

perceptron layers with 32 and 8 neurons, respectively, and

TCAs. The base non-linearity for the TCA was TED.

h1

hL
hM

h1

x1

x
N

Wi,jWi,j

TCA−Based Feed−Forward Network

1 2

1

1

2

2

Fig. 6. Illustration of a two-layer feed-forward network based on TCAs.

C. Results

We trained the network as an AEC, a VAE, and as a D-PBN

using PBN Toolkit [19]. Note that in the VAE, a TCA is not

used in the the output layer, because the output layer in a VAE

has a special form. The output TCA is also not used in the

D-PBN, since back projection starts with the output of the last

linear transformation. In all cases, we trained to convergence

with TCA training disabled, that is with the equivalent of

a simple AF, then again with TCA training enabled. We

report mean square error (MSE) on training and test data in

Table II. We may make a number of conclusions from the

table. First, using TCA significantly improves performance

(compare “Yes” rows to ‘No” rows). For AEC, however, the

improvement does not generalize to test data. Second, the D-

PBN has not only best performance, but it generalizes much

better than conventional auto-encoders, a feature of D-PBN

that we have reported prevously [18]. In this case, there was

almost no measureable difference between training and test

data. As we explained, both the VAE and D-PBN do not

use the final TCA, so the performance difference hinges only

on the TCA at the output of the first layer. Despite this, a

significant improvement is seen.

D. TCA vs Added Network Layers

The performance improvements of TCA in a standard feed-

forward or plain auto-encoder can be attributed to the increased

parameter count over standard activation functions, but a TCA

achieves this with far fewer parameters than adding layers.

Furthermore, in RBMs and DBNs, using TCAs creates novel

generative models with stochastic units based on finite mixture

distributions, something that cannot be achieved by adding

network layers. Using TCAs, it is seen that RBMs and DBNs

have significantly better performance.

VII. CONCLUSIONS

In this paper, we have introduced trainable compound

activations (TCAs) and justified their use based on PDF

estimation and removal of modalities. We have derived novel

restricted Boltzmann machines (RBMs) based on TCAs, and

have demonstrated convincing improvements for TCAs in ex-

periments using stacked RBMs, deep belief networks (DBNs),

auto-encoderes and deterministic projected belief networks (D-

PBNs). All experiments were implemented using PBN Toolkit

[19]. All data, software, and instructions to repeat the results

in this paper are archived at [19].
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