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Abstract—The task of distribution generalization concerns
making reliable prediction of a response in unseen environments.
The structural causal models are shown to be useful to model
distribution changes through intervention. Motivated by the
fundamental invariance principle, it is often assumed that the
conditional distribution of the response given its predictors
remains the same across environments. However, this assumption
might be violated in practical settings when the response is
intervened. In this work, we investigate a class of model with
an intervened response. We identify a novel form of invariance
by incorporating the estimates of certain features as additional
predictors. Effectively, we show this invariance is equivalent to
having a deterministic linear matching that makes the general-
ization possible. We provide an explicit characterization of the
linear matching and present our simulation results under various
intervention settings.

Index Terms—Distribution generalization, invariance, causal
structural model, LMMSE estimator

1. INTRODUCTION

Consider the problem of predicting the response Y given
its predictors X = (X1, ..., Xd)

⊤ in unseen environments.
To model distribution changes in different environments (or
training and test distributions), the common assumption is that
the assignment for Y does not change across environments (or
Y is not intervened). The structural causal models (SCMs) [1],
[2] allow for natural formulations of the conditional distribu-
tion of Y given X [2]–[8], and the underlying principle is
known as invariance, autonomy or modularity [1], [9]–[11].
For instance, in the invariance causal prediction framework [5],
it is assumed that the conditional distribution of Y given
a set of predictors XS ⊆ {X1, ..., Xd} is invariant in all
environments; a relaxed version is adopted in the stabilized
regression method [12] where only the conditional mean is
assumed to be invariant.

In practical settings, however, the structural assignment of Y
might change across environments, i.e., Y might be intervened.
We thus believe there is a need of relaxing the assumption and
exploring alternative forms of invariance. To shed some light
on this more challenging setting, we propose to model Y as

Y = fU (XPA(Y ), ϵY ),

where PA(Y ) denotes the set of direct (causal) parents of
Y , and ϵY is an independent noise, and a (discrete) random
variable U is introduced to capture the dependence of struc-
tural assignment on different environments (i.e., each U = u

corresponds to one environment). The main challenge lies in
whether it is still possible to identify forms of invariance to
facilitate prediction in unseen environments. In this work, we
make an attempt in this direction by focusing on a mixture of
linear SCM models, and the assignment for Y is

Y = a(U)⊤X1
PA(Y ) + b⊤X2

PA(Y ) + ϵY , (1)

where XPA(Y ) is partitioned into X1
PA(Y ) and X2

PA(Y ), and coef-
ficients a(U) formalize the changing conditional distributions;
furthermore, we consider a training model and a testing model,
and allow a(·) to be arbitrarily different under the two models.
To make reliable predictions on the testing model, we identify
an additional class of predictors that are computed based on
the linear minimum mean square error (LMMSE) estimators
of Xk given XS for any fixed U = u, for k ∈ {1, ..., d} and
S ⊆ {1, ..., d} \ k. Roughly speaking, these predictors (along
with the original ones X) allows for a deterministic relation
for predicting Y , with coefficients that are invariant for all
environments. This makes the generalization task possible, as
one can then reuse the coefficients for unseen environments
or test data.

2. BACKGROUND AND PROBLEM FORMULATION

We now formally introduce the model and rewrite (1) in
a more compact form. Let U denote a set of environments
where a target variable Y ∈ R and a vector of predictors
X = (X1, . . . , Xd)

⊤ ∈ X ⊆ Rd×1 are observed, we assume
U ∈ U and (X,Y ) satisfy an acyclic SCM that we call the
training SCM,

S :


U = εU

X = γY +BX + εX (2)
Y = (β + α(U))⊤X + εY , (3)

where εU ∈ U , εY ∈ R, α(U), β, γ, εX ∈ Rd×1, B ∈ Rd×d,
and the noise variables εX1 , . . . , εXd

, εU , and εY are jointly
independent, and assume that α(U) is a nondegenerate random
variable (i.e., not a one-point distribution). This nonlinear
SCM S can be viewed as a mixture of linear SCMs, since
S is linear when conditioning on U = u. The causal graph
G(S) induced by S can be drawn according to the nonzero
coefficients in S . Without loss of generality, we require
{Xj : βj ̸= 0} and {Xj : αj(U) ̸= 0} to be two distinct
sets of parents of Y .
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We assume that the variable U is a root node in G(S) such
that only the parameters that are functions of U may change
in the testing SCM defined below. The reason behind this
assumption is that if there is no evidence that a parameter
is changing for a diverse set of environments in the training
data, then that parameter is likely to remain invariant in the
test data or any unseen environments.

Remark 1: For an intercept term in (3) that depends on U ,
it can be taken as the coefficient of X1 = 1. For simplicity,
we assume that εX and εY have zero means, which implies
E[X|U = u] = E[Y |U = u] = 0 and thus E[X] = E[Y ] = 0
(the same goes for the testing SCM defined below).

Remark 2: In [13], the authors have shown that a form of
varying filter connecting feature and response (as a special
case of the varying coefficients in (3)) is effective for causal
inference tasks, by adopting estimators from [14].

Similarly, let Uτ denote a set of unseen environments
(Uτ = uτ ) where the observed variables Uτ ∈ Uτ and
Xτ = (Xτ

1 , . . . , X
τ
d )

⊤ ∈ X τ ⊆ Rd×1 and the unobserved
variable Y τ ∈ R follow an acyclic testing SCM,

Sτ :


Uτ = εUτ

Xτ = γY τ +BXτ + εXτ

Y τ = (β + ατ (Uτ ))⊤Xτ + εY τ ,

where the noise variables εXτ
1
, . . . , εXτ

d
, εUτ , and εY τ are

jointly independent, and (ε⊤Xτ , εY τ ) and (ε⊤X , εY ) are equal in
distribution. Since we assume that only the parameters that are
functions of U in S may change in Sτ , we have ατ

j (U
τ ) = 0

for any j ∈ {1, . . . , d} such that αj(U) = 0.
In this work, we consider the setting when the only param-

eter in S that depends on U is the coefficient vector α(·), but
α(·) and ατ (·) can be arbitrarily different. By assuming the
independence of εU and εY , the distribution of εY remains
invariant when conditioning on U = u for different u, while
the case when the variance of εY changes arbitrarily with
respect to u can be challenging, since Var(εY ) is simply the
MMSE of the estimator E[Y |XPA(Y ), U ]. Another setting when
only the parameters in the assignments of the predictors are
allowed to depend U (i.e., only X is intervened) is considered
in the stabilized regression framework [12], where a weaker
version of the causal invariance property [5] is assumed. Using
our notation, it is assumed that there exists S ⊆ {1, . . . , d}
such that E[Y |XS = x, U = u] = E[Y |XS = x] ≜ g(x) holds
for all x and u. Since g(x) does not depend on u, the above re-
lation remains the same for both the training and testing SCMs
(for instance, E[Y τ |Xτ

S = xτ , Uτ = uτ ] = E[Y τ |Xτ
S = xτ ] =

g(xτ ) holds for all x and uτ ). This assumption allows one
to select predictors that provide consistent predictions of the
target variable across the observed and unseen environments.
In general, the assumption is violated for the SCMs S and Sτ

when Y is intervened, or equivalently, when the parameters
depending on U appear in the assignment of Y .

Our invariance property relies on the LMMSE estimators
of a target variable Y ∈ R given a vector of predictors
X ∈ Rp×1, denoted by El[Y |X] = (θols)⊤(X−E[X])+E[Y ],

where θols ≜ Cov(X,X)−1 Cov(X,Y ) is also called the
population ordinary least squares (OLS) estimator. For the
SCM S, we denote the LMMSE estimator of Y given X when
conditioning on U = u as El[Y |X;U = u] ≜ (θols(u))⊤X
with its OLS estimator θols(u) ∈ Rd×1. And correspondingly,
we define El[Y |X;U ] ≜ (θols(U))⊤X that is linear in X but
with coefficients depending on U . Equivalently, one can define
El[Y |X;U ] by

El[Y |X;U ] = argmin
l⊤(U)X∈L

E
[
|Y − l⊤(U)X|2

]
, (4)

where L = {l⊤(U)X | l : U → Rd×1} is a class of functions
that are linear in X but with coefficients depending on U .
This function class is introduced as it is compatible with the
form of the assignment of Y in (3). Similarly, we have the
function class Lτ for the testing SCM Sτ . It is important
to note that even though El[Y |X;U ] achieves the minimum
prediction error for Y (as in (4)), it may not be applicable
for predicting Y τ since U and Uτ may differ in general. And
in fact, the prediction error of using El[Y |X;U ] for Y τ can
be arbitrarily high as we do not restrict the forms of α(·)
and ατ (·). In the next section, we show that this issue can be
resolved via our invariance property.

3. INVARIANT MATCHING PROPERTY

A. One Motivating Example

Example 1: Consider (Y,X⊤, U) ≜ (Y,X1, X2, X3, U)
satisfying the following acyclic SCM (illustrated in Fig. 1),

X1 X2

Y U

X3

Fig. 1. Directed acyclic graph G(Stoy).

Stoy :

{
Y = a(U)X1 +X2 +NY

X3 = Y +X1 +N3,
(5)

where U,X1, X2, N3, and NY are jointly independent, and
X1, X2, NY , and N3 are N (0, 1)-distributed. The testing SCM
Sτ

toy over (Y τ , Xτ
1 , X

τ
2 , X

τ
3 , U

τ ) can be defined similarly,
where Xτ

1 has a coefficient aτ (Uτ ). Since (Y,X) is multi-
variate Gaussian given U = u, the MMSE estimator of Y
using X given U = u is

E[Y |X,U = u] =X⊤ (
E[XX⊤|U = u]

)−1
E[XY |U = u]

=
1

2
(a(u)− 1)X1 +

1

2
X2 +

1

2
X3,

which implies E[Y |X,U ] = 1
2 (a(U) − 1)X1 + 1

2X2 +
1
2X3. Similarly, one can compute E[X3|X1, X2, U ] =
(1 + a(U))X1 + X2. Observe that E[Y |X1, X2, X3, U ]
and E[X3|X1, X2, U ] are two linear combinations of
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{a(U)X1, X1, X2, X3}; a(U)X1 can not be linearly repre-
sented by {X1, X2, X3}. Thus, there exists a deterministic
linear relation

E[Y |X,U ] = λE[X3|X1, X2, U ] + η⊤X, (6)

with unique coefficients λ = 1/2 and η = (−1, 0, 1/2)⊤ that
do not depend on U . Furthermore, since the right-hand side
of (6) is a linear function of E[X3|X1, X2, U ] and X , and it
equals to the MMSE estimator E[Y |X,U ] among all functions
of X and U , we obtain an invariant relation

E[Y |X,U ] = El

{
Y

∣∣∣∣E[X3|X1, X2, U ], X

}
=

1

2
E[X3|X1, X2, U ]−X1 +

1

2
X3 (7)

for the training SCM. Since λ and η are not functions of
U , they will remain invariant for the testing SCM. Note
that E[Xτ

3 |Xτ
1 , X

τ
2 , U

τ ] is determined by the distribution of
(Xτ , Uτ ). A prediction model like (7) with invariant coeffi-
cients is often not unique when it exists. One can show that
E[Y |X,U ] = − 3

2 E[X2|X1, X3, U ]−X1+
1
2X2+X3, however,

this does not hold for E[X1|X2, X3, U ].
Remark 3: In general, an invariance relation (7) may not

hold for the MMSE estimator E[Y |X,U ] if (X,Y ) is not
Gaussian when conditioning on U = u for each u ∈ U . In
this work, we do not require Gaussianity, and we focus on the
LMMSE estimator detailed in the next section.

B. Invariance Matching Property

Our invariant matching property is motivated by the fol-
lowing observation: If X includes any descendants of Y , then
α(·) (that may change in the unseen environments) will be
passed on to the descendants. In other words, if Y has at
least one child, there will be certain dependency between the
mechanism that generates Y and certain statistical properties
of X , which is also true for Y τ and Xτ . Thus, the change of
the function α(·) can be revealed by the changes of certain
statistical properties of X . As illustrated in the motivating
example, we have identify features of the form El[Xk|XS ;U ]
to be useful for prediction.

Formally, we say that a model S satisfies the invariant
matching property if there exists k ∈ {1, . . . , d} and S ⊆
{1, . . . , d} \ k such that

El[Y |X ; U ] = El

{
Y

∣∣∣∣X,El[Xk|XS ;U ]

}
(8)

= λEl[Xk|XS ;U ] + η⊤X, (9)

where parameters λ and η do not depend on U , and the same
holds for the testing SCM Sτ , i.e.,

El[Y
τ |Xτ ;Uτ ] = λEl[X

τ
k |Xτ

S ;U
τ ] + η⊤Xτ .

In general, due to the difference between α(·) and ατ (·),

El[Y |X = x;U = u] = El[Y
τ |Xτ = x;Uτ = u]

does not hold for x ∈ X ∪ X τ and u ∈ U ∪ Uτ even if
U and Uτ are equal in distribution. By introducing some

feature El[Xk|XS ;U ], the invariant matching property bridges
El[Y |X = x;U = u] and El[Y

τ |Xτ = x;Uτ = u] (for the
same (x, u)) with a linear relation that remains invariant across
all observed and unseen environments.

In our invariant matching property, note that (9) follows
from (8) by the definition of linear MMSE. Now we show the
other direction is also true in the following technical lemma.

Lemma 1: For some k ∈ {1, . . . , d}, S ⊆ {1, . . . , d} \ k,

El[Y |X;U ] = El

{
Y

∣∣∣∣X,El[Xk|XS ;U ]

}
(10)

if and only if there exists λ ∈ R and η ∈ Rd×1 such that

El[Y |X;U ] = λEl[Xk|XS ;U ] + η⊤X. (11)

holds for all u ∈ U .

C. Characterization of the Features

An important fact about a feature of the form El[Xk|XS ;U ]
is that it does not depend on Y , so the corresponding feature
El[X

τ
k |Xτ

S ;U
τ ] for the testing SCM will not depend on the

unobservable variable Y τ . In other words, extracting the
features only requires exploring the relations between the
predictors while taking the target variables Y and Y τ as
unobserved. The consequence of Y being unobserved is that
(U,X1, . . . , Xd)

⊤ no longer follows a mixture of linear SCMs,
but a mixture of linear models with a set of dependent noise
variables. Specifically, when Y is unobserved (or equivalently,
substitute Y in (3) into (2)), then the relations between the
predictors are as follows,

X =
(
γ(β + α(U))⊤ +B

)
X + γεY + εX , (12)

where γεY + εX is a vector of dependent random variables
when γ non-zero. Observe that the function α(·) is captured
by the relations of the predictors only if γ is not a zero vector
in (12), which brings up the following key assumption.

Assumption 1: Y has at least one child.
The equivalent definition of our invariant matching property

in (11) allows for simpler evaluation through computation.
In order to verify (11) for a particular feature El[Xk|XS ;U ],
we compute the LMMSE estimators El[Xk|XS ;U = u] and
El[Y |X;U = u] and check whether there exists coefficients
for (11) to hold. In the following theorem, we show that
it holds for a wide class of k ∈ {1, . . . , d} and S ⊆
{1, . . . , d} \ k.

Theorem 1: There exists λY ∈ R and ηY ∈ Rd×1 such that

El[Y |X;U = u] = (λY α(u) + ηY )
⊤X

holds for every u ∈ U . For each k ∈ {j : αj(u) = 0} and
S ⊆ {1, . . . , d} \ k such that {j : αj(u) ̸= 0} ⊆ S, there
exists λk,S ∈ R and ηk,S ∈ Rd×1 such that

El[Xk|XS ;U = u] = (λk,Sα(u) + ηk,S)
⊤X

holds for every u ∈ U . If λk,S ̸= 0, then the relation

El[Y |X;U = u]
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=
λY

λk,S
El[Xk,S |XS ;U = u] +

(
ηY − λY

λk,S
ηk,S

)
X,

holds for every u ∈ U .
In this theorem, we provide a complete characterization of

the invariant matching property (9) for El[Y |X;U = u] and
El[Xk|XS ;U = u], which allows us to use El[Xk|XS ;U ] as a
predictor for Y (see Algorithm 1 for implementation details).

Remark 4: Observe that λk,S is nonzero if and only if there
exists different u1, u2 ∈ U such that

El[Xk|XS ;U = u1] ̸= El[Xk|XS ;U = u2]. (13)

This is true in generic cases when Xk ̸⊥⊥ U |XS . Note that if
Assumption 1 is not satisfied (Y has no children), then Xk ⊥⊥
U |XS since U is a root node and has only one descendent Y .

4. ALGORITHM

For each k ∈ {1, . . . , d}, S ⊆ {1, . . . , d} \ k, we estimate
the following LMMSE estimator for the prediction of Y ,

Y (k, S) = El

{
Y

∣∣∣∣X,El[Xk|XS ;U ]

}
= λ(k, S)El[Xk|XS ;U ] + η⊤(k, S)X. (14)

According to Lemma 1, a feature El[Xk∗ |XS∗ ;U ] that satisfies
the invariant matching property if and only if Y (k∗, S∗)
achieves the minimum prediction error for Y among the
prediction errors of all possible Y (k, S)’s. Since such feature
is not unique in general (shown by the toy example in
Section 3-A), we do not choose the feature that leads to
the lowest prediction error. Rather, we look for features with
prediction errors below a certain threshold ε (see the end of
this section for the determination of ε).

For the training SCM S and testing SCM Sτ , let U =
{u1, . . . , up} and we denote Uτ ≜ V = {v1, . . . , vq} for
simplicity of notation. For each ui ∈ U , we are given the i.i.d.
training data Xui ∈ Rn(ui)×d,Y ui ∈ Rn(ui)×1, and for each
vi ∈ Uτ , we observe the i.i.d. testing data Xvi ∈ Rm(vi)×d.
Let X ∈ Rn×d with n ≜

∑p
i=1 n(ui) denote the pooled data

matrix of all Xui , ui ∈ U . Similarly, we define the pooled data
matrices Y ∈ Rn×1 and Xτ ∈ Rm×d with m ≜

∑q
i=1 m(ui).

In Algorithm 1, for k ∈ {1, . . . , d}, S ∈ {1, . . . , d} \ k, we
adopt the OLS estimator to estimate the feature vectors

Êl[X
ui

k |Xui

S ] = Xui

S

(
(Xui

S )⊤Xui

S

)−1
(Xui

S )⊤Xui

k , (15)

Êl[X
vi
k |Xvi

S ] = Xvi
S

(
(Xvi

S )⊤Xvi
S

)−1
(Xvi

S )⊤Xvi
k , (16)

for the training data and the testing data, respectively.
Let X̃(k, S) ≜

(
Êl[Xk|XS ],X

)
∈ Rn×(d+1) denote the

augmented design matrix. For feature selection on the training
data, we compute the prediction residuals of Y as follows

R(k, S) = Y − Ŷ (k, S), (17)

with an estimate of Y (k, S) (the vector form of Y (k, S)) as

Ŷ (k, S) = X̃(k, S)
(
X̃

⊤
(k, S)X̃(k, S)

)−1

X̃
⊤
(k, S)Y

≜ X̃(k, S)β(k, S),

where the OLS estimator β(k, S) ∈ Rd×1 can be reused for
predicting Y τ . That is, on the testing data we compute

Ŷ
τ
(k, S) = X̃

τ
(k, S)β(k, S), (18)

where X̃
τ
(k, S) ≜

(
Êl[X

τ
k|X

τ
S ],X

τ
)
∈ Rm×(d+1).

Algorithm 1 Generalizable Prediction via Invariant Matching
procedure SELECT FEATURES ON THE TRAINING DATA

for k ∈ {1, . . . , d} do
for S ⊆ {1, . . . , d} \ k do

(i) Compute the feature vector Êl[X
ui

k |Xui

S ] for
each ui by (15), and combine the feature vectors
into one vector Êl[Xk|XS ]
(ii) Compute R(k, S) in (17) and check whether
||R(k, S)||22 ≤ ε

procedure EXTRACT THE SELECTED FEATURES ON THE
TESTING DATA

for every (k, S) such that ||R(k, S)||22 ≤ ε do
(i) Compute the feature vector Êl[X

vi
k |Xvi

S ] for each
vi by (16), and combine the feature vectors into one
vector Êl[X

τ
k|X

τ
S ]

(ii) Predict Y τ using the feature Êl[X
τ
k|X

τ
S ] by

computing Ŷ
τ
(k, S) according to (18)

Output Ŷ
τ

as the average of all computed Ŷ
τ
(k, S)

We determine the parameter ε using the residuals R(k, S)
defined above. First, we run the first procedure in Algorithm 1
with a sufficiently large ε to compute the training prediction
error ||R(k, S)||22 for all (k, S)’s. Then, we rank all the
prediction errors, and set ε be the (100α)%-quantile of the
all prediction errors, where α controls the proportion of the
features that will be selected. For the experiments in the next
section, α is fixed to be 0.05.

5. EXPERIMENTS

We compare our method with three baseline methods:
Ordinary Least Squares (OLS), stabilized regression (SR) [12],
and anchor regression (AR) [15]. For the anchor regression,
we use a 5-fold cross-validation procedure to select the hyper-
parameter γ from {0.2, 0.4, . . . , 1} ∪ {2, 3, . . . , 5}.

Experiment A: Regular setting.
We randomly simulate 500 models generated as follows.

Consider the training SCM S with 10 predictors and U =
{1, 2, . . . , 5}. The acyclic graph G(S) is randomly generated
with each edge existing with probability 0.5. In the gener-
ated graph, we require Y to have at least one parent and
one child. For the parameters in the training SCM, all the
coefficients in S that do not depend on U are randomly
sampled from Unif[−1.5,−0.5] ∪ [0.5, 1.5], and the noise
variables εX and εY are jointly independent standard normal
random variables. For the intervention on Y , we choose np ∼
Unif{1, . . . , |PA(Y )|} of the parents of Y to have a coefficient
vector α(u) + β ∈ Rnp×1, u ∈ U . The coefficient vectors
α(1), α(2), . . ., α(5) are vectors of i.i.d. random variables
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Fig. 2. Experiment A.

following Unif[−2, 2], and the elements of β are sampled from
Unif[−1.5,−0.5] ∪ [0.5, 1.5].

The testing SCM Sτ has the same graph and parameters
as S except that Uτ = {6, 7, . . . , 10} and the new coeffi-
cient vectors ατ (6), ατ (7), . . ., ατ (10) are drawn from i.i.d.
Unif[−10, 10]. For each u ∈ U or uτ ∈ Uτ , the sample size is
300. Overall, Fig. 2 shows our method outperforms all three
baseline methods by having smaller median and variance for
the mean residual sum of squares (RSS).
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Fig. 3. Experiment B-1.

Experiment B: Reduced intervention on training data.
We consider cases when interventions on the training data

are reduced from that in Experiment A, while the data gener-
ating process for the testing data remains the same as before.

1) Smaller variation of coefficient vectors: The coefficient
vectors α(1), . . ., α(5) are vectors of i.i.d. entries according to
Unif[−1, 1], reducing the variation of the coefficient vector.

2) Less number of environments: The support of the vari-
able U is reduced to U = {1, 2}. Accordingly, the sample size
of the pooled training data is now 2 ∗ 300 = 600.

In Fig. 3 and Fig. 4, our method has a smaller median
compared with the three baseline methods, while they have
similar medians. Due to the averaging procedure over multiple
prediction models in Algorithm 1, our method has smaller
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Fig. 4. Experiment B-2.

variances than OLS and AR. The averaging procedure of SR
fails since their assumption that Y is not intervened is violated.
Compared with Experiment A, the median and variance of our
method are slightly larger, but our method is less sensitive
with respect to the reduced interventions in comparison with
the baseline methods.
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