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Abstract—In this paper, we revisit the use of spectrograms in
neural networks, by making the window length a continuous pa-
rameter optimizable by gradient descent instead of an empirically
tuned integer-valued hyperparameter. The contribution is mainly
theoretical at the moment, but plugging the modified STFT to
any existing neural network is straightforward. We first define
a differentiable version of the STFT in the case where local
bins centers are fixed and independent of the window length
parameter. We then discuss the more difficult case where the
window length affects the position and number of bins. We
illustrate the benefits of this new tool on an estimation and a
classification problems, showing it can be of interest not only
to neural networks but to any STFT-based signal processing
algorithm.

Index Terms—STFT, spectrogram, window length, backprop-
agation, differentiable optimization, neural networks

I. INTRODUCTION

The short-time Fourier transform (STFT) is an important
tool for analyzing non-stationary signals such as transient
events like animal sounds [1], discontinuous events like elec-
troencephalography signals [2] as well as smoothly varying
multi-harmonic signals typically measured on variable speed
mechanical components [3]. Spectrograms built from the
outputs of the STFT can be used for simple visualization
and understanding of non-stationary signals. In this respect,
several researchers have been working to improve the read-
ability of spectrograms using some post-processing techniques
such as reassignment [4] and synchro-squeezing [5], [6].
Spectrograms can be also combined with other processing
methods to perform more advanced tasks. For instance, [7]
combines principal component analysis with vibration signals
spectrograms for mechanical fault detection. Spectrograms
have also been commonly used to feed transformers, recurrent
and convolutional neural networks in various applications, e.g.
identification and estimation [8], speech recognition [9], [10],
music detection [11], electrocardiogram classification [12],
data augmentation [13], source separation [14] etc.

In this work, we are particularly interested in the latter appli-
cations i.e those combining neural networks and spectrograms.

In this framework, the window length of the spectrogram is
usually a fixed parameter, empirically set by trial-and-error or
to the default values of commonly used signal processing li-
braries, without thorough investigation or further justification.
But this parameter deserves to be carefully set, as it determines
the trade-off between the time and frequency resolution of
the spectrogram, in accordance with Heisenberg’s uncertainty
principle.

Our main contribution in this paper is a new paradigm
for window length optimization we believe could become a
standard way of tuning the window length of spectrograms
used as input to neural networks. It consists in modifying the
definition of the STFT operator to make the window length
a continuous parameter w.r.t. which spectrogram values can
be differentiated. The main idea is to break down the window
size parameter into two variables: a numerical window size
integer parameter and a time resolution continuous parame-
ter. This distinction has multiple consequences regarding the
differentiability of the STFT and, in turn, gives the window
length parameter a similar role to neural network weights.In
fact, the differentiability proofs and backpropagation formulas
provided in this paper allows a joint tuning of the neural
network weights and spectrogram resolution (via its window
size).

It is worth to note that the problem of searching the best
window length is not new and several methods have been
proposed in the literature such as [15]–[17]. However, we
emphasize that our goal in this paper is not to propose
the best way for optimizing the window size parameter, but
instead a method for online optimization of the spectrogram
resolution in a neural network with gradient algorithms. In
that respect, the aforementioned methods are not adapted to
our context as they are offline methods. To our knowledge, the
only attempt to optimize the window length with a gradient
descent is found in the recent work [18] using a Gaussian
window and which can be seen as a special case of the
theory we propose. However, our paper goes further: the STFT
transform is mathematically differentiable and all calculations
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with propagation and backpropagation formulas are provided.
This paper is organized as follows. In Section II, we

start by giving some definitions and notations. In Section III
we introduce the modified STFT, being differentiable w.r.t.
the window length. In Section IV we extend the theory to
the difficult case of STFT with fixed-overlap. In Section V
we illustrate the effectiveness of our approach through two
applications and we close our discussion in Section VI with
few concluding remarks.

II. DEFINITIONS AND NOTATIONS

All over this paper we will refer to the STFT as an operation
taking a one-dimensional time series s[t] as input and returning
a 2-dimensional table S[i, f ], each column S[i, :] being the
Discrete Fourier Transform (DFT) of a slice of length denoted
by L = 2n of the signal s going from an index bi to an index
bi+L−1, multiplied by a second sequence hL called “tapering
function”. This leads to the following formula we take as a
definition of the STFT:

S[i, f ] = F(hLs[bi : bi + L− 1])[f ]

=

L−1∑
k=0

hL[k]s[bi + k]e−2jπkf/L,
(1)

where F(·) denotes the Discrete Fourier Transform (DFT)
operator, i is an integer expressing the index of the slice and
bi the associated starting point. Starting indices bi of time
intervals are usually equally spaced, so we only have to set
the first index b0 and spacing ∆b between bi and bi+1. This
spacing is usually defined as a percentage of L, through a
ratio α called overlapping: ∆b = ⌊αL⌋ where ⌊·⌋ denotes
the integer part. Finally, several choices exist for the tapering
function hL. A common one is the Hann window defined as:

hL[k] =
1

2
− 1

2
cos(

2πk

L− 1
). (2)

Having made notations and terminologies clear, we will
move next to the core of this paper: building a STFT whose
window length L is a continuous parameter w.r.t. which
spectrogram values are differentiable.

III. DIFFERENTIABLE FIXED-SIZE STFT
Bulding a differentiable version of STFT means writing a

formula similar to Eq. (1) where L becomes a continuous
parameter and S[i, f ] is differentiable w.r.t. L. We see that
each term of the sum is already differentiable w.r.t. L seen as
a continuous parameter. If bi indices are assumed static the
only obstacle is the presence of L as a bound of the sum,
which suggests breaking down L into a numerical window
size N and a time resolution θ:

S[i, f ] =
N−1∑
k=0

hN,θ[k]s[bi + k]e−2jπkf/N . (3)

where hN,θ is a tapering function defined on [0, N − 1] but
taking non-zero values in the interval [N−1−θ

2 , N−1+θ
2 ] where

we have:
hN,θ(k) = hθ(k +

θ −N + 1

2
) (4)

hN,θ

bi

bi +N

time resolution θ

bi+1

bi+1 +N

θ +∆θ
fixed hop length ∆b

numerical window size N

bi+2
. . .

Fig. 1. Fixed-size STFT: on one hand, the size N of the subsignal on
which DFT is computed is fixed, on the other hand, the support θ of the
tapering function, which actually determines time resolution is allowed to
vary. Differentiation will be made w.r.t. this latter parameter.

Let us discuss a little bit the interpretation of N and θ.
Parameter θ has a meaning very close to the meaning of L:
it sets the time length of the signal slice on which a local
spectrum is computed. The difference with classical STFT is
that the slice is filled with zeros in order to always be of
size N . As a consequence, frequency resolution of the local
spectra is not anymore commended by θ but by the second
parameter N > θ. This frequency resolution is unrealistic as
the signal was padded with zeros: increasing N does not bring
more information. Parameter N should only be seen as an
upper bound on the time resolution θ making differentiation
possible. Now let us compute the differential of our proposed
STFT w.r.t. the time resolution θ. We directly obtain:

∂S(i, f)
∂θ

=

N−1∑
k=0

exp (−2jπ
kf

N
)
∂h(k)

∂θ
s[bi + k] (5)

where we recognize the STFT of s with tapering function
h′ =

∂hN,θ(k)
∂θ instead of hN,θ:

∂S[s]
∂θ

= Sh′ [s] (6)

The latter result allows deriving compact gradient backprop-
agation formulas. We recall gradient backpropagation is the
process of computing the derivative of a function L w.r.t. the
input of a function g given its derivative w.r.t. the output of
g, i.e., computing L

I given L
S for S = g(I). In our case we

directly obtain:

∂L
∂θ

=

T∑
i=1

N−1∑
f=0

∂L
∂S(i, f)

∂S(i, f)
∂θ

=

〈
∂L
∂S

,Sh′ [s]

〉
, (7)

where ⟨·, ·⟩ denoted the Froebenius scalar product of two
matrices : {A,B} =

∑
i,j Ai,jBi,j .

Note we assumed until now that slices positions [bi, bi + k]
where independent from θ meaning the number of columns of
the STFT is constant. This case is useful when the STFT is
the input to another algorithm that takes a fixed-size STFT as
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input, such as neural networks. But this is not representative
of all use cases as the standard way to choose the indices bi is
setting an overlapping ratio (usually 50%) then letting indices
bi depend on θ. This more elaborated case is discussed in
Section IV below.

IV. DIFFERENTIABLE FIXED-OVERLAP STFT

The more usual way of specifying the characteristics of
a STFT is defining an overlapping parameter α instead of
the bins positions. If window size is a fixed integer L this is
straightforward : the gap between starting indices of two slices
is simply ⌊αL⌋. This is more complicated for differentiable
STFT as setting this gap to ⌊αθ⌋ loses differentiability w.r.t. θ
while removing the integer part would mean the bound of the
interval is not an integer. The solution is setting bi = ⌊αθ⌋ and
compensating the effect of the integer part by the combination
of a small shift in the argument of hN,θ and a factor e2jπbif/N

making the obtained STFT differentiable:

S[i, f ] =
N−1∑
k=0

hN,θ(k − frac(iαθ))s[bi + k]e
−2jπ(k+bi)f

N (8)

where frac = x − ⌊x⌋. The remaining of this section will be
dedicated to supporting this modified formula, first showing it
is continuous w.r.t. θ, then showing it is even differentiable:

Proposition IV.1. STFT defined by Eq. (8) is everywhere
continuous w.r.t. θ.

Proof. The integer and fractional part functions are continuous
everywhere except on integers. So Eq. (8) is continuous
everywhere except possibly when iαθ takes an integer value
p ∈ N. We will prove that it is also continuous then by looking
at its left and right limits, i.e. for θ = p

iα ± ϵ with 0 going to
zero.

For θ = p
iα−ϵ, we have bi = p−1 and frac(iαθ)) = 1−iαθ,

which implies:

S[i, f ] =
N−1∑
k=0

hN,θ(k − 1 + iαθ)s[p− 1 + k]e
−2jπ(k+p−1)f

N

=

N−1∑
k=0

hN,θ(k
′ + iαθ)s[p+ k′]e

−2jπ(k′+p)f
N (9)

To obtain the second line, we set k′ = k−1, where k′ varies
from −1 to N − 2. But first and last element being zero, the
sum is not changed if k′ goes from 0 to N − 1.

For θ = p
iα + ϵ, we have bi = p and frac(iαθ)) = iαθ,

which implies:

S[i, f ] =
N−1∑
k=0

hN,θ[k − iαθ]s[p+ k]e
−2jπ(k+p)f

N (10)

So the limit is the same for θ = p
iα ± ϵ when ϵ → 0.

We proved our differentiable fix-overlap STFT is continuous
w.r.t. θ. Let us consider its differentiability. The first step is

hN,θ

bi bi +Ntime resolution θ

θ +∆θ

bi+1 bi+1 +Nbi+1

bi+1 +N

numerical window size N

Fig. 2. Differentiable Fixed-overlap STFT: Fig. 2 has similar content to Fig. 1
but illustrates the difference with the fixed-size case: the center of the tapering
function vary now with θ and possibly akes a non integer value.

noticing that computations leading to Eq. (7) still hold, h′

being replaced by:

h′ =
∂

∂θ

[
hN,θ(k − frac(iαθ))e2jπbif/N

]
(11)

where bi = ⌊iαθ⌋ is a function of θ. Eq. (11) is defined only
when iαθ is not an integer, i.e., when Eq. (8) is obviously
differentiable. Extension to any value of θ is the point of Prop.
3.2 below.

Proposition IV.2. The modified fixed-overlap STFT defined by
Eq. (8) is everywhere differentiable w.r.t. θ.

Proof. If iαθ is not an integer, we have as in Eq. (5):

∂S(i, f)
∂θ

=

N−1∑
k=0

h̃(k − frac(iαθ))∂θs[bi + k]e2jπ(k+p)f/N

(12)
with h̃ = −iα

∂hN,θ

∂k +
∂hN,θ

∂θ obtain expanding Eq.(11). We
recognize the same shape as Eq. (8) meaning a smimilar
reasoning will show that the derivative Eq. (12) converges to
the same limits when iαθ goes to an integer by lower or upper
values. As a consequence, the proposed fixed-overlap STFT is
differentiable everywhere.

We just proved that we actually obtain the desired dif-
ferentiable w.r.t. the time resolution parameter θ version of
STFT, even in the case of fix-overlap. This allows in particular
gradient backpropagation, as Eq. (7) still applies. But fixed-
overlap STFT raises a second issue: we assumed the number
of columns of the obtained STFT was fixed, which is false
as the number of columns increases when the time resolution
decreases. The solution is padding the signal with zeros and
taking into account all windows covering at least one value of
the original signal. Then, the value of each column (replaced
with zero when not defined) is a continuous function of θ.
This way we obtained a STFT with fixed number of lines
but a number of columns which depends on the chosen time
resolution, akin to a classical STFT if overlapping ratio is
maintained fix while window size changes.
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Remark. In many applications, it is common to consider
instead of the complex STFT S[i, f ], the spectrum magnitude
|S[i, f ]| also called spectrogram, or any function of |S[i, f ]|
such as log |S[i, f ]|. As this transformation is not differentiable
at zero, a trick is to use a smooth relaxation. A typical example
is the smooth hyperbolic function

√
|S[i, f ]|2 + ϵ, ϵ > 0 which

approaches the absolute value in the limit case ϵ → 0.

V. EXPERIMENTS

In this section, we show how the proposed differentiable
STFT can be of an immediate interest for any task involving
a spectrogram. The first example illustrates the optimisation
of the window length through a simple frequency tracking
problem. In the second experiment, we investigate the joint
optimisation of the window length with the weights of a simple
neural network.

A. Frequency tracking

The objective is to track the instantaneous frequency of a
mono-component signal over time. The spectrogram is widely
used in the literature to perform such a task. The motivation
is that this difficult problem turns to be a peak detection and
ridge tracking problem in the spectrogram: the aim is to detect
the points of highest energy in the spectrogram plane. The
challenge of time-frequency domain estimation is to find the
appropriate window length to track fast frequency variations
over time while maintaining a good frequency resolution.

In this example, we generate synthetic training data consist-
ing of variable period sine plus white noise. The objective is
to find the best window length that achieves the lowest mean
square error in this training data

L(θ) = 1

J

J∑
j=1

∥∥ŷθj − ȳj
∥∥2 (13)

where ȳj is the true frequency of the jth signal of the training
data and ŷθj is the estimated frequency from the spectrogram
of window length θ using some appropriate method. The latter
can be a standard signal processing approach or a neural
network including or not additional unknown parameters. For
simplification reasons, we take in this example, the estimated
frequency ŷ[i] at each time interval i as the weighted mean of
the spectrogram frequencies with weights calculated from the
spectrogram amplitude as follows

ŷθ[i] =

∑
f Sθ[i, f ]f∑
f Sθ[i, f ]

(14)

where Sθ is the spectrogram of window length θ. The latter
is then the only unknown parameter of the loss function.

In our experiments, we consider our fixed size differen-
tiable spectrogram and we run a gradient descend algorithm
minimizing (13) allowed by the backpropagation formulas
of Sections III and IV. At the convergence of the gradient
descent algorithm, the window length has reached the min-
imum of the loss on Fig. 3. Fig. 4 shows a spectrogram
with the estimated window length and Fig. 5 the resulted

estimated frequency. We see that the window length looks
adapted to the problem although it was automatically tuned
through gradient descent. This simple simulation proves the
effectiveness of our backpropagation procedure based on a
differentiable version of STFT. It also illustrates a general
window length tuning methodology applicable to any existing
signal processing algorithm involving spectrograms: replace
the spectrogram computation step by the computation of our
differentiable spectrogram, then optimise the window length
by gradient descent based on the backpropagation formulas
we have introduced.

Fig. 3. Loss per window length. At the end of the gradient descent, the time
resolution continuous parameter θ reached the minimum value of the above
cost function.

Fig. 4. Spectrogram S obtained with optimal window length.

Fig. 5. Frequency estimation ŷ based on spectrogram S. The estimation looks
close to the true frequency.

B. Joint optimisation with a neural network

This second example illustrates how easy it is to plug our
modified STFT into any existing neural network. Indeed, The
goal of this experiment is to show that it is possible to jointly
optimize the weights of a neural network with the window size
of the spectrogram and that the latter will converge towards
an optimal window size.

We chose a simple classification task of spoken digit recog-
nition using Free Spoken Digit Dataset (FSDD). The objective
is to automatically find the best window size together with the
best network weights for the considered dataset that minimizes
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the cross-entropy with the ground truth. We trained, for several
previously fixed window sizes, a 2-layer convolutional neural
network in order to compare the accuracy of the network as
a function of the window size. We see in Table I, that the
window size parameter is very important because the accuracy
of the same trained network for different values of the window
size varies strongly. Also that, whatever the initial value of the
window size is, during a joint optimization with the network
weights, the window size parameter converges to an optimal
value as displayed on Fig. 6 and 7. Indeed, at the end of the
gradient descent, the window length reached the value 34.9
whereas we started the training with a window size of 200.

TABLE I
TRAINING, VALIDATION AND TESTING LOSSES OF CNN PER FIXED

WINDOW LENGTH.

window length train loss val loss test loss
10 0.3672 1.1442 1.0391
20 0.0304 0.4443 0.3177
30 0.0089 0.2408 0.0306
40 0.0064 0.2550 0.1249
50 0.0061 0.4859 0.2868

Fig. 6. Training and validation loss per epoch. Losses decrease by jointly
optimizing the window length and the weights of the neural network.

Fig. 7. Window length per epoch. During training, the time resolution
continuous parameter θ converged to an optimal value.

VI. CONCLUSION

We presented a modification of STFT making this operation
differentiable w.r.t. the window length parameter, and gave
the induced backpropagation formulas. As far as we know,
this had not been done until now although this algorithm is

ubiquitous in signal processing. The main application of this
contribution is revisiting the combination of spectrograms and
neural networks: instead of directly giving a spectrogram as
input to the network, one can now directly give the time signal
as input to the network having our differentiable spectrogram
as first layer and window length as continuous parameter and
let it optimize this window length along with all weights of
the network.
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[11] Schlüter, J., and Böck, S. (2014). Improved musical onset detection with
convolutional neural networks. In 2014 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6979-6983).

[12] Huang, J., Chen, B., Yao, B., and He, W. (2019). ECG arrhythmia
classification using STFT-based spectrogram and convolutional neural
network. IEEE Access, 7, 92871-92880.

[13] Park, D. S., Chan, W., Zhang, Y., Chiu, C. C., Zoph, B., Cubuk, E.
D., and Le, Q. V. (2019). Specaugment: A simple data augmentation
method for automatic speech recognition.
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