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Abstract—This paper bridges the gap in the literature between
neural networks and probabilistic graphical models. Invertible
neural networks are incorporated in factor graphs and inference
in this model is described by linearization of the network.
Consequently, hybrid probabilistic inference in the model is
realized through message passing with local constraints on the
Bethe free energy. We provide the local Bethe free energy for the
invertible neural network node, which allows for evaluation of
the performance of the entire probabilistic model. Experimental
results show effective hybrid inference in a neural network-based
probabilistic model for a binary classification task, paving the
way towards a novel class of machine learning models.

Index Terms—Factor Graphs, Hybrid Inference, Invertible
Neural Networks, Message Passing, Bethe Free Energy

I. INTRODUCTION

Alongside the introduction of powerful neural networks in
recent years, invertible neural networks (INNs) have gained
significant attention in the literature. Their main usage in
normalizing flows has fueled the interest of many [1]–[5].
INNs are enforced to be invertible, either by design [6] or by
constraining its Lipschitz constant [7], and are often composed
of multiple simpler mappings for improved expressivity. De-
spite their success in many signal processing tasks, INNs, and
more generally black-box neural networks, have often been
criticized for their obscure and difficult to evaluate operations.

In contrast to INNs, probabilistic models are known to be
better explainable, because they retain uncertainty in their
results and allow for incorporating domain-specific knowledge
in their model structure. Furthermore, probabilistic graphical
models (PGMs) are also well-known for their modularity in
model-based machine learning tasks, especially when infer-
ence is performed through message passing-based algorithms.
Forney-style Factor Graphs (FFGs), a particular kind of PGM,
visualize the individual factors of a probabilistic model by
nodes that are interconnected by edges that represent the vari-
ables in the model [8], [9]. Message passing-based inference
in an FFG can be interpreted as a modular and distributed
Bethe free energy (BFE) minimization procedure [10].

By combining INNs with PGMs, conventional model-based
approaches can be naturally augmented with data-driven el-
ements. Fusing domain-specific knowledge with these data-
driven elements allows for more transparent model architec-
tures, which are still capable of solving highly non-linear sig-
nal processing problems. This approach aids the development
of explainable artificial intelligence.
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This paper incorporates INNs in FFGs using message
passing-based probabilistic inference, allowing for joint
model- and data-based approaches to signal processing. Un-
der customizable local constraints [10] the neural network-
based model easily submits to hybrid inference techniques.
After reviewing factor graphs and hybrid message passing in
Section II, we make the following contributions:

• We specify INNs as nodes in a factor graph in Sec-
tion III-A.

• We describe how message passing-based probabilistic
inference can be performed in factor graphs containing
INNs in Section III-B through linearization of the INN.

• We evaluate the performance of the model through the
variational free energy and we describe how it can be
used to perform parameter estimation in the networks in
Section III-C.

• We demonstrate our methodology by performing hybrid
inference in a probabilistic model containing INNs for a
binary classification task in Section IV.

II. FACTOR GRAPHS AND MESSAGE PASSING

In this section we introduce factor graphs and probabilistic
inference by means of message passing. We choose this
methodology because of its modularity, efficiency, automata-
bility and scalability [9], [11].

A. Factor graphs

Factor graphs are a class of PGMs. Here we use FFGs as
introduced in [12] with notational conventions adopted from
[8]. FFGs are undirected graphs with nodes representing the
factors of the probabilistic model. These nodes are intercon-
nected by edges with a maximum degree of 2, denoting the
variables in the model. For a more thorough review of factor
graphs, we refer the interested reader to [8], [9].

B. Sum-product message passing

Probabilistic inference concerns calculating marginal distri-
butions in the model. The calculation of a marginal distribu-
tion of some variable requires integration over all nuisance
variables in the model. Because of the factorization in the
model, this global integration can be performed by smaller
localized computations, which summarize parts of the model.
The results of these computations are called messages and are
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propagated over the edges of the graph. The sum-product mes-
sage ~µ(xj) [13] flowing out of some node f(x1, x2, . . . , xK)
with incoming messages ~µ(x\j) is given by

~µ(xj) =

∫
f(x1, x2, . . . , xK)

∏
k 6=j

~µ(xk) dx\j . (1)

To distinguish between forward and backward messages prop-
agating in or against the direction of some edge xj , ~µ(xj) and
~µ(xj) respectively, the FFG has arbitrarily directed edges. The

marginal distribution for variable xj can be computed from the
colliding messages as p(xj) ∝ ~µ(xj) · ~µ(xj).

C. Hybrid message passing

Quite often the integral in (1) is intractable and we need to
resort to approximate inference methods. Consider the (unnor-
malized) probabilistic model f(x) with factors {fa | a ∈ F}
and variables {xi | i ∈ X}, which factorizes as f(x) =∏
a∈F fa(xa), where xa denotes the argument variables of

fa. The true posterior distribution p(x) is related through
p(x) = f(x)/Z, where Z =

∫
f(x)dx is the normalization

constant. This constant is often unobtainable and can instead
be bounded by the variational free energy (VFE) as

F[q] = Eq(x)
[
ln
q(x)

f(x)

]
= KL [q(x) ‖ p(x)]− lnZ, (2)

where q(x) is an approximation to the true posterior p(x).
A versatile approximation for q(x) is the Bethe approxima-

tion [14], defined in an FFG by the factorization

q(x) =
∏
a∈F

qa(xa)
∏
i∈X

qi(xi)
−1, (3)

which results into the Bethe free energy (BFE), an approxi-
mation to the VFE, that is exact for trees, as

FB[q] = −
∑
a∈F

Eqa(xa) [ln fa(xa)]−
∑
a∈F

H[qa] +
∑
i∈X

H[qi],

which decomposes the VFE into the sum of node-local free
energy contributions and edge-specific entropies H. Impor-
tantly, by adding local constraints to the BFE functional,
a variety of high performance inference algorithms can be
recovered [10], including the sum-product (belief propagation)
algorithm [13], [15], variational message passing [16], [17]
and expectation propagation [18]. By combining different
local constraints hybrid inference schemes can be obtained.
We highly recommend the interested reader to [10] for an
overview of these local constraints and their implications for
the resulting inference algorithm.

III. METHODS

A. Model specification

Consider a deterministic factor

p(y | x) = δ(y − g(x)) = δ(g−1(y)− x), (4)

in an arbitrary probabilistic model, where δ(·) represents the
Dirac delta function. The invertible and differentiable mapping
g : RD → RD, with inverse g−1, maps a (latent) input variable

x(1)

x(2)

y(1)

y(2)hθ

f

Fig. 1. Schematic overview of the coupling layer in (6) with coupling function
hθ and coupling flow f .

x to a (latent) output variable y. The mapping g is allowed
to be composed of several mappings (or layers) gk as

y = g(x) = gK ◦ . . . ◦ g2 ◦ g1(x), (5)

where k = 1, 2, . . . ,K denotes the index of the mapping.
Latent intermediate outputs xk of the composite mapping can
be calculated recursively as xk = gk(xk−1), further specifying
y = xK and x = x0. In contrast to [19, Ch.5], [20] we
explicitly constrain g to be invertible and differentiable, and
we encourage g to be composed of multiple mappings gk.

Although g is constrained to be invertible, we are not
guaranteed to have direct access to its inverse [4], whereas
we require this for computationally efficient inference. In this
case the coupling layers introduced in [6] can enforce this in-
vertibility whilst retaining a highly expressive transformation.
These coupling layers are defined for the forward mapping g
(left) and backward mapping g−1 (right) as [4], [6]:

y(1) = x(1) x(1) = y(1)

y(2) = hθ(x
(2)) x(2) = h−1θ (y(2))

(6)

Here the input and output are partitioned into two disjoint
subspaces (x(1),x(2)) and (y(1),y(2)), respectively. Note that
the superscript refers to the partition index, contrary to the
subscript denoting the intermediate outputs. The bijection hθ,
also known as a coupling function, with known inverse h−1θ ,
is parameterized by θ = f(x(1)) = f(y(1)). An example
of such a coupling function is the additive coupling function
hθ(x

(2)) = x(2) + f(x(1)) with inverse h−1θ (y(2)) = y(2) −
f(y(1)). Here the coupling flow f is an arbitrarily complex
function that is not required to be invertible and can therefore
even be represented by a neural network. Fig. 1 shows a
schematic overview of the coupling layer in (6).

For the modular usage of this factor node in a large
probabilistic model, we specify interfacing with the rest of
the model by incoming messages ~µ(x) and ~µ(y) and (to be
determined) outgoing messages ~µ(x) and ~µ(y), see Table I.

B. Probabilistic inference

In contrast to conventional assumptions about INNs, we do
not assume inputs or outputs to have fixed values. Inputs and
outputs of the INN can originate from adjacent model sections,
which can be arbitrarily complex and summarized by messages
~µ(x) and ~µ(y). As a result these messages can represent
probability distributions that incorporate uncertainty about
neighboring model sections. To support message passing-
based inference with INNs, the incoming messages ~µ(x) and
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Fig. 2. The factor graph representation of the binary classifier in (9). The composite probit node of (10a) is enclosed by the dashed box.

TABLE I
TABLE CONTAINING THE FORNEY-STYLE FACTOR GRAPH

REPRESENTATION OF THE INVERTIBLE NEURAL NETWORK FACTOR NODE,
AN OVERVIEW OF THE CHOSEN INCOMING MESSAGES AND THE DERIVED

MESSAGES FOR THE INVERTIBLE NEURAL NETWORK FACTOR NODE BY
APPROXIMATING THE MAPPING g BY A FIRST-ORDER TAYLOR EXPANSION.

Invertible Neural Network Factor Node

gx

~µ(x)

y

~µ(y)

Incoming Functional form
messages
~µ(x) N (x |mx, Σx)

~µ(y) N (y |my , Σy)

Outgoing Functional form
messages

~µ(x) N
(
x | g−1(my), J−1

g (my)ΣyJ
−1
g (my)>

)
~µ(y) N

(
y | g(mx), Jg(mx)ΣxJg(mx)>

)

~µ(y) need to be propagated through the INN node (4). The
exact outgoing sum-product messages can be determined using
(1). However, the non-linearity of g and its inverse make exact
computations of the outgoing messages intractable. Next, we
discuss a solution strategy for resolving these intractabilities.

A feasibly solution approach concerns the linearization of
g(x) and g−1(y) around the means of the incoming messages
using a first-order vector Taylor expansion [19, Ch.5] as

g(x) ≈ g(mx) + Jg(mx)(x−mx) (7a)

g−1(y) ≈ g−1(my) + Jg−1(my)(y −my), (7b)

with means mx = E~µ(x)[x] and my = E ~µ(y)[y]. Jg and Jg−1

represent the Jacobian matrices of g and g−1, respectively,
which are related through J−1g = Jg−1 . The composition of g
in (5) allows for the decomposition of the Jacobian Jg as

Jg(x) = JgK (xK−1) · · · Jg2(x1)Jg1(x0), (8)

where the Jacobian matrices of the individual mappings are
evaluated at their corresponding latent intermediate inputs xk.

When the incoming messages can be represented by Normal
distributions, this linearization retains their Normal form.
An overview of the model with the incoming and outgoing
messages is shown in Table I. As an alternative to this
linearization, we could also use the Unscented Transform
[21], [22], numerical quadrature procedures [20] or general
sampling methods (e.g. [23]).

C. Node-local free energy

For determining the performance of models containing
INNs we need to determine the node-local free energy of

the INN node. [10, Sec. 5.2] describes three approaches of
determining the node-local free energy of a deterministic node.
We follow their third approach and approximate the node-
local free energy by the negative entropy of the input marginal
distribution. This input marginal can be approximated as the
product of the incoming and outgoing messages ~µ(x) ~µ(x).
With this node-local free energy it becomes possible to evalu-
ate the variational free energy of the entire model. Parameter
estimation then concerns the minimization of the variational
free energy with respect to the parameters of the INN. This
can be achieved by automatic differentiation.

IV. EXPERIMENTAL VALIDATION

In this section we perform hybrid message passing in a
probabilistic model containing an INN. First, we give an
overview of the experimental setup, followed by a formal
specification of the probabilistic model and finally we will
present the obtained results.1

A. Experimental set-up

All experiments are performed in the scientific program-
ming language Julia [24]. The ReactiveMP package [25]
allows us to perform efficient and automated probabilistic
inference through tabulated message passing update rules.
Besides a wide variety of (hybrid) inference techniques,
ReactiveMP is compatible with automatic differentiation
libraries. In this paper we use ForwardDiff [26] for this
purpose with Optim [27] as optimization package.

B. Model specification

We specify a probabilistic model for binary classification,

p(y,x, z,w) =

N∏
n=1

p(yn | xn)p(xn | zn)p(zn | wn)p(wn)

(9)
where the individual factors are given by

p(yn | xn) = Ber(yn | Φ(xn)) (10a)

p(xn | zn) = δ(xn − 1>zn) (10b)
p(zn | wn) = δ(zn − g(wn)) (10c)

p(wn) = N (wn | µn,Σn) . (10d)

The model can be interpreted as follows. A (latent) multi-
variate input wn with mean vector µn and covariance matrix
Σn is fed into the INN node p(zn | wn) with mapping
g. Importantly, the invertible and differentiable mapping g
is parameterized and is identical across all data points. The
output of the INN zn is then summed to xn ∈ R, which

1All experiments are available at https://github.com/biaslab/
EUSIPCO2022-HybridInferenceInvertibleNeuralNetworks.
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Fig. 3. An overview of the means µn being propagated through the probabilistic model. (left) The generated means µn. (middle) Means µn after transformation
by the invertible neural network. (right) Histogram of the transformed and reduced means µn at the input of the probit node.
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Fig. 4. An overview of the posterior classification of means µn. (left) True classification labels. (middle) Predicted posterior classification labels. (right)
Predicted posterior classification map.

is mapped to an observed class label yn ∈ {0, 1} through
the probit factor node p(yn | xn), as specified in [28].
Here Φ(·) denotes the cumulative distribution function of the
standard Normal distribution. Fig. 2 shows the factor graph
corresponding to the model in (9). For visualization purposes
we restrict wn (and related variables) to be 2-dimensional,
although the specified model can be easily altered to deal with
an arbitrary dimensionality.

The mapping g in the INN is modeled by 4 coupling layers.
The coupling function is chosen as hθ(x) = x + θ with
coupling flow θ = f(x) = x + λ1 tanh(λ2x + λ3), with
parameters λi ∈ R, inspired by the planar flow of [3]. After
each layer the partitions of wn are permuted, because the
coupling layers leave part of the input unchanged, whereas
the layers need to modify both partitions [6].

The specified model is subject to hybrid inference because
of the probit factor node. Depending on the local constraints
[10] around the probit node, the node either sends out a
sum-product message towards xn or performs expectation
propagation [18]. Although the functional form of the sum-
product message is well-defined, it cannot be recognized as a
common distribution. Propagating this message therefore leads
to intractable inference. Here we will resort to expectation

propagation by applying a moment matching constraint to the
posterior distribution of xn [10].

C. Results

We perform binary classification with the model in (9)
for N = 200 data points. The covariance matrix Σn is set
to 10−3I2, where Id represents the identify matrix of shape
(d × d). The parameters of the INN node are initialized
by randomly sampling from a standard Normal distribution.
Inference through the INN node is executed using message
passing by linearizing the INN as described in Section III-B.
The variational free energy is based on the resulting marginals
and is minimized with respect to the INN parameters through
automatic differentiation during training. Fig. 3 shows how the
means µn are transformed through the NF node and after the
dot product. From this we can observe that the INN learns to
separate the distinct labels. Fig. 4 gives an overview of the true
labels of the data points, the predicted posterior labels of these
points and posterior classification mapping for µn ∈ [0, 1]2.

V. DISCUSSION

Table I shows that the covariance matrix of the outgoing
message requires the covariance matrix of the incoming mes-
sage when linearizing the INN. Often it is instead preferred

1400



to propagate precision matrices as the calculation of the
marginal distribution then does not require any inversions. The
outgoing precision matrices can be obtained as a function of
the incoming precision matrices by inverting the covariances
matrices in Table I, which requires inverting the obtained
Jacobian matrices. Using the identity J−1g = Jg−1 and the
fact that the INN node has access to its inverse, we can obtain
inversion-free message and posterior marginal calculations. An
interesting direction of future research would be to incorporate
more efficient and robust inference operations as in [29]–[31].

VI. CONCLUSION

This paper has integrated invertible neural networks in
probabilistic graphical models. The inference procedure in the
network has been generalized for latent inputs and outputs
by linearizing the network. Based on local constraints on
the Bethe free energy, hybrid inference procedures can be
employed on the neural etwork-based model, as illustrated by
the experimental binary classifier. This research paves the way
for a novel class of machine learning algorithms, where both
the strengths of probabilistic graphical models and invertible
neural networks are combined.
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