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Abstract—Vessel noise classification is generally considered as
a challenging task due to its need for robustness and reliability.
Thus, classification in this domain mainly relied on expert feature.
Raw waveform architectures have been historically avoided,
despite their performances in other domains. This paper proposes
a Learning-based Scattering Transform (LST) that efficiently
learns temporal dependencies within cyclostationary signals, such
as vessel noises. The LST is implememented as a Convolutional
Neural Network (CNN) with short filters whose structure mimics
a multiscale signal decomposition. By this way, the architecture
of our neural network is intrinsically explainable. Numerical
simulations compare our method to an other explainable model
and classic convolutional neural networks.

Index Terms—Ship acoustic signal, Bayes detection, CNN,
Scattering transform, Explainability

I. INTRODUCTION

Due to a complex environment and substantial levels of
ambient noises partially hiding ship signals, vessel noise clas-
sification is considered as a rather challenging task compared
to speech recognition [1] or environmental sound classification
[2]. Fortunately, ship noise signatures present some forms of
cyclostationarity or periodicity in second order statistics [3]–
[5], while ambient noise is mostly stationary or impulsive. In
other acoustics domains, several publications have shown that
1D CNNs [6], [7] or convolutional restricted Boltzmann ma-
chines [8] could outperform architectures employing extracted
features [9], [10], with a cascade of convolutional layers and
non-linear operations applied to raw acoustic signals.

In safety-critical applications such as vessel noise classifi-
cation, a reliable classification is crucial. Reliability concerns
interpreting the reasons behind an algorithm’s decision, even
if the algorithm is considered as a black box [11]. In image
recognition, it is mainly done through various visualization
methods such as GradCAM [12] or LIME [13] in order to
highlight which feature in the image is responsible for a
given prediction. However, interpretability with visualization
is not satisfactory for raw acoustic signal where most of the
information is accumulated in second-order statistics. Further-
more, considering human user expectations, explainability by
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design [14] is preferable. In other words, the classification
architecture must have a clear mathematical structure with
identifiable mappings between the classification steps.

The optimal solution of a classification problem for which
we seek to maximize the classification accuracy is the Bayes
detector. In [15], the authors proposed a structurally explain-
able deep network whose structure matches the Bayes detector
structure through neural network approximation theory. A
notable loss of accuracy with this approximation was due to
the excessive size of filters that must be learned to extract
long temporal dependencies. Indeed, reports on the impact of
convolutional filter sizes suggest that models with larger filters
tend to perform worse than small ones [16]. To improve the
architecture in [15], while not increasing model complexity to
the point of losing understanding of its internal working, we
turn our attention to signal processing methods implementable
within deep learning framework.

Our contributions are threefold. First, we propose the LST
CNN module, a learning-based adaptation of the scattering
transform [17] that keeps most of the mathematical structure
of the scattering transform. This module creates different sub-
sampled filtered versions of the signal which collectively learn
a bank of small convolutional filters. Second, by aggregating
all these filtered versions of the input signal, we show that
we obtain an interpretable signal representation whose math-
ematical structure is trainable as a regular CNN. This CNN
has significantly less coefficients to estimate that the original
CNN proposed in [15]. Third, we compare our approach to
usual Fully Convolutional Neural Networks (FCNN). For these
experimentations, we exploit both a simplified acoustic model
of ship acoustic noise [18] and the real data set ShipsEar [19]
of underwater sounds produced by vessels of various types.

This paper is organized as follows. Section II describes the
problem of classifying received signal as either ambient noise
or ship acoustic signals. Section III presents our explainable
first-order LST CNN. Section IV is dedicated to numerical
experiments and section V concludes the paper.
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II. PROBLEM STATEMENT

A. Observation model

Let t 7→ x(t) ∈ R be a signal received after sensor array
pre-processing. It is the sum of a ship-radiated noise sθ(t)
with signature parameters θ and an ambient noise na(t) [20]:

x(t) = sθ(t) + na(t). (1)

The ambient noise na(t) is a zero-mean white Gaussian
stationary noise with variance σ2

a. It is independent from sθ(t).
The ship-radiated noise sθ(t) is modeled as a merchant ship
propeller zero mean Gaussian noise with the variance denoted
σ2
θ(t). The detailed model is described in [18] but it does

not matter in this paper that is focused on the approximation
of the optimal Bayes detector with a neural network. Let us
assume that x(t) is sampled into K samples x(k) = x(tk)
at some sampling times tk such that we obtain the vector
x = [x(1), . . . , x(K)]. From (1), it follows that each sample
x(k) follows the Gaussian distribution

x(k) ∼ N
(
0, σ2

θ(k) + σ2
a

)
. (2)

Let us assume that θ is unknown but it belongs to a
finite set of known ship signatures Θ = {θ1, . . . , θM}. Our
classification problem consists in deciding if the signal x
contains only ambient noise (hypothesis H0) or if it contains
a ship signal sθ with θ ∈ Θ (hypothesis H1):

H0:{x(k) ∼ N
(
0, σ2

a

)
, k ∈ JKK}, (3)

H1:{x(k) ∼ N
(
0, σ2

θ(k)+σ
2
a

)
, θ ∈ Θ, k ∈ JKK}, (4)

where JKK = {1, . . . ,K}. It must be noted that hypothesis
H1 is composite [21] since θ is unknown. We consider a
data set S = {(x(1), y(1)), ..., (x(N), y(N))} where (x(i), y(i))
is composed of a received signal x(i) ∈ RK and its label
y(i) ∈ {0, 1} such that y(i) = j means that x(i) follows the
hypothesis Hj . The training samples (x(i), y(i)) are indepen-
dent and follow the mixture distribution D(x, y):

D(x, y) = q0Pr0(x) + q1

M∑
m=1

πmPrm(x) (5)

where Pr0(·), resp. Prm(·), denotes the probability measure
as x follows H0, resp. H1 with signature θm. The probability
q0 = Pr(y = 0) and q1 = Pr(y = 1) = 1 − q0 are the
probability of occurrence of H0 and H1 respectively, while
πm is the probability to get the signature θm when H1 occurs.

B. Deep neural network optimization

A detection rule for solving (3)-(4) is a function δ : RK →
{0, 1} that decides Hi when δ(x) = i. We consider a binary
sigmoid decision function δ̂µ : RK → [0, 1] based on a neural
network output ĥµ(x) : RK → R,

δ̂µ(x) = 1{ρs(ĥµ(x))≥0.5} =

{
0 if ĥµ(x) < 0,

1 if ĥµ(x) ≥ 0,
(6)

where 1A is the indicator function, ρs : t 7→ 1/(1 + e−t) is
the sigmoid function and µ ∈ RP denotes the set of trainable

parameters [22]. The neural network is trained on the training
set S by minimizing the empirical risk RN (µ) [23]

RN (µ) : =
1

N

N∑
i=1

L
(
ĥµ(x

(i)), y(i)
)
, (7)

where L is the binary cross-entropy defined such that
L(z, y) = y log(z) + (1 − y) log(1 − z) for any 0 ≤
z, y ≤ 1. The general performance of δ̂µ(x) is measured with
the population risk R(µ) for the ideal “0-1” loss function
L0−1(z, y) = 1{z=y} and compared to the minimum risk R∗

attained by the theoretical Bayes detector δ∗(x):

R(µ) : = E(x,y)∼D[L0−1(δ̂µ(x), y)], (8)
R∗ : = E(x,y)∼D[L0−1(δ

∗(x), y)]. (9)

When D(x, y) in (5) is known, a short calculation detailed
in [15] shows that the optimal Bayes detector δ∗(x) is

δ∗(x) = 1{h∗(x)≥0} =

{
0 if h∗(x) < 0,
1 if h∗(x) ≥ 0,

(10)

h∗(x)=c0 +

M∑
m=1

(
cm exp

(
K∑

k=1

bm,k x
2(k)

))
, (11)

where h∗(x) is the decision function, c0 = −q0/q1 and the
coefficients cm and bm,k depends on the σ2

θ(k)’s and σ2
a. The

structure of the Bayes decision function h∗(x) is intrinsically
explainable. The square function t 7→ p2(t) = t2 extracts the
variance information (second order statistics) from the samples
x(k). Each signal k 7→ bm,k plays the role of a matched filter
that computes a profile score related to the consistency of
the input signal variance with a given signature occurring in
H1. The exponential function t 7→ e(t) = exp(t) amplifies the
most likely signature profile score. Finally, the signal m 7→ cm
acts as a filter that averages the contributions of the profile
scores to get the final decision value h∗(x).

In statistical learning [23], the quality of the training, i.e.
the convergence of a model δ̂µ(x) toward δ∗(x), can thus be
assessed through the difference R(µ) − R∗. The goal is to
build a neural network δ̂µ(x) whose structure is structurally
explainable (i.e., close to the natural structure of the Bayes
detector) and that minimizes the error minµ R(µ)−R∗.

C. Class of explainable deep networks

Noting that the Bayes detector (10) can be rewritten as a
sigmoid-based decision δ∗(x) = 1{ρs(h∗(x))≥0.5}, [15] has
developed a class of neural networks F∗ than can approximate
accurately h∗(x). Deep networks in F∗ mimic the mathe-
matical structure of h∗(x) in (11) by approximating each of
its internal functions and operations separately and accurately
with specifically designed neural network modules. The set F∗

is called the class of Bayes explainable neural networks. By
definition, it contains the networks f̂ω(x) with the structure

f̂ω(x) = α0 +

M∑
m=1

αmΦe,γ2

(
K∑

k=1

φm,kΦp2,γ1
(x(k))

)
, (12)
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where Φp2,γ1
: R 7→ R and Φe,γ2

: R 7→ R are specific
neural network with parameters γ1 and γ2, dedicated to the
approximation of the square function p2(t) = t2 and exponen-
tial function e(t) = et in h∗(x). These two neural networks
are composed of L hidden layers with exactly W neurons per
layer. The whole neural network f̂ω(x) is implemented as a
CNN. The parameters α0, . . . , αm and φm,k play respectively
the role of the coefficients c0, . . . , cm and bm,k in (11). The
imposed structure on f̂ω(x) ∈ F∗ allows us to later interpret
the role of each layer or group of layers in f̂ω(x).

The main default of F∗ is its loss of performance for small
data sets compared to state of the art CNNs. This loss of
performance is mainly due to the estimation of the M filters
k 7→ bm,k of size K by k 7→ φm,k. In literature, 1D CNNs
are generally designed with medium sized filters (≈ 128) on
their first layer [6], [8], which often end up with most filters
learning collectively a logarithmically distributed bandpass
filter bank [24] with same patterns found at different scales.
Convolutional layers generally use small filter sizes [24].

III. DEEP NETWORK ARCHITECTURE

This section proposes to replace the filters bm,k, in the space
of high temporal resolution, with shorter filters in a space of
reduced dimension. There exist expert features such as the
scattering transform [17] whose structure is explainable. Our
objective is to design a neural network architecture that is
inspired by the scattering transform.

A. Filter size reduction with scattering transform

The scattering transform [17] is a representation of mod-
ulation spectrum at multiple orders, where frequency bands
are equally spaced on the exponential scale. Its mathematical
structure is similar to a CNN architecture, as its computation
is done through a cascade of wavelet transforms and modulus
non-linearities. It relies on wavelet theory and it does not
involve any learning. For a signal x, the first-order scattering
transform S[x](λ), indexed by the frequency λ, is given by

S[x](λ) = |x ⋆ ψλ| ⋆ ϕT . (13)

In practice, it is obtained by convolving the signal x with the
wavelet filer ψλ of central frequency λ ∈ Λ, where Λ is a grid
composed of Q central frequencies per octave and ⋆ denotes
the discrete convolution. The filter ϕT locally averages the
signal over a time duration T . Here we set it to the signal
size T = K (similar to a global average pooling operation
in CNN), making coefficient S[x](λ) a time invariant real
value and not a vector. Analyzing the signal x with filters ψλ

distributed in a Mel scale enables us to reduce its dimension.
Hence, we can prove (the proof is omitted due to the lack of
space) the following result.

Theorem 1: Let x be a signal defined by (1) and M real
filters k 7→ bm,k. Then, there exist some sequences λ ∈ Λ 7→
βm,λ of coefficients such that∣∣∣∑

λ∈Λ

βm,λS[x2](λ)−
K∑

k=1

bm,k x
2(k)

∣∣∣ ≤ ϵ,∀m ∈ JMK, (14)

where ε is a constant depending on the σ2
θ(k)’s and Λ.

This theorem tells us that we can avoid the long filters k 7→
bm,k. In practice, the number of parameters is significantly
reduced since |Λ| ≪ K.

B. Learning-based scattering transform (LST)

Based on our Theorem 1, we propose a learning-based
scattering transform, denoted as LST, in order to obtain a
more flexible representation of the signal inside a deep neural
network architecture. Let us build a family of learned filters
ψλ where λ = (s, f) ∈ Λ = JSK × JF K is interpreted as
follows: s corresponds to an imposed scale (the input signal
size is reduced recursively) and f to a filter identifier number
(several different filters are used in the LST). By this way, we
propose a LST S̃[x] : RK 7→ RS×F , that takes the signal x
and returns the set of values S̃[x](λ) for λ = (s, f).

Fig. 1 describes our first order LST module S̃[x](λ).
Firstly, let us introduce the temporal scale decomposition. This

Fig. 1. Architecture of the LST S̃[x] applied to a signal x.

corresponds to the green branch from top to down in Fig. 1. A
1D convolutional filter ψLF , of size p×1, is first applied to the
input signal x. An average pooling operation ϕ2 of size and
stride 2 is then applied for subsampling, reducing the signal
size by two. The filter ψLF is not learned. It is a low pass
Morlet wavelet which constrains the next layers to analyze
lower frequency octaves. Hence, we define the scale recursion

x†s+1 = (x†s ⋆ ψLF ) ⋆ ϕ2, (15)

with the initialization x†1 = x. Each decomposition corre-
sponds to a layer in our neural network. The size of a signal
x†s must be larger that the size p of ψLF . Hence, S must
satisfy 2p > K

2S
≥ p. This subsampling allows us to learn

filters ψλ with small receptive fields.
Next, let us introduce the learned filters ψλ with λ = (s, f).

Actually, the family of filters ψ(s,f) does not depend on s : we
use the same family of filters for all scale levels. Hence, at the
layer of scale s, the LST applies F filters ψf with 1 ≤ f ≤ F :

S̃[x](s, f) = |x†s ⋆ ψf | ⋆ ϕK , (16)

where ϕK is a global average pooling of size K and λ =
(s, f). Each filter ψf of size p is learned. By this way, each
layer s analyzes a different octave of x with F different filters
ψf instead of the Q wavelets per octave used in the usual
scattering transform [17].
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Finally, at each node of the architecture, two feature maps
are produced, giving birth to two branches equivalent to the
high frequency and low frequency decompositions of the usual
discrete wavelet transform. In the first branch (on the top of
each node in Fig. 1), we apply to the signal x†s the F filters
ψf to get S̃[x](s, f) for all f . The output S̃[x](s, f) at scale
s has a size 1×F because of the global pooling. This output
is concatenated with earliest output layers, creating shortcut
connections [25], between each layer and the final network
output S̃[x], of size S × F . Since the LST is inspired from
the scaterring transform, we can show the following theorem.

Theorem 2: Let x be a signal defined by (1) and M real
filters k 7→ bm,k. Then, there exist some sequences λ ∈ Λ =
JSK × JF K 7→ βm,λ of coefficients such that∣∣∣∑

λ∈Λ

βm,λS̃[x2](λ)−
K∑

k=1

bm,k x
2(k)

∣∣∣ ≤ ϵ,∀m ∈ JMK, (17)

where ε is a constant depending on S, F and the σ2
θ(k)’s.

C. Explainable LST CNN

We can now describe our full neural network architecture
that extends (12). The LST CNN architecture is given by

ĥµ(x)=α0+

M∑
m=1

αmΦe,γ2

(∑
λ∈Λ

βm,λS̃[Φp2,γ1
(x)](λ)

)
, (18)

where µ contains the αm’s, the βm,λ’s, γ1 and γ2. Since
the function (18) combines two structurally explainable CNNs
given both in (12) and Theorem 2, it is still structurally
explainable. The class of all LST CNNs defined by (18) is
denoted H∗. Theorem 3 extends Theorem 1 in [15] with our
novel architecture to guarantee the approximation of h∗(x).

Theorem 3: Let ϵ ∈ (0, 12 ), X is a bounded subset of RK ,
and D > 0 such that p2(t) and e(t) are defined over [−D,D].
Then, there exist a LST CNN in H∗ and Q > 0 such that

inf
ĥµ∈H∗

sup
x∈X

|ĥµ(x)− h∗(x)| ≤ ϵ, (19)

when the number of layers L satisfies L ≤ Q log22(1/ϵ) +
log2(1 + 1/D). Furthermore, there exists C ′ > 0 such that

inf
ĥµ∈H∗

R(µ)−R∗ ≤ C ′ ϵ. (20)

IV. EXPERIMENTS

A. Experiments on simulated data

This section compares the accuracy of our architecture ĥµ,
our previous work architecture f̂ω [15], the optimal Bayes
detector (10) and a classical FCNN architecture [6], for M =
16 merchant ship like signatures. The Bayes detector optimal
risk R∗ is computed accurately with a Monte-Carlo procedure
and shown as the red curve in Fig. 2. The test and train curves
are obtained by averaging the performances of 10 models of
each architecture, on a test set Stest of 2 · 105 independent
samples and a training set S containing up to Nmax = 8 · 105
signals of length K = 512.

The architecture ĥµ is the same as the one presented in [15]
except that it contains the LST module proposed in this paper.
This module contains F = 4 filters of size p = 32 randomly
initialized. It requires learning (p+1)F = 132 parameters for
its filters, plus S ·F = 16, with S = 4 ≈ ln2(K)− ln2(p), for
the βm,λ’s, compared to K = 512 parameters for the bm,k’s.
The Adam optimizer is used during training with a maximum
kernel constraint on convolutional layers. The stopping crite-
rion is an absence of improvement in validation loss during
15 consecutive epochs, or after 100 training epochs.

Fig. 2. Average accuracy on train and test sets for 10 trainings of ĥµ, f̂γ
and a FCNN, as a function of data set size.

For low data set sizes, ĥµ with its 2711 parameters has a
similar accuracy than the FCNN with 1 037 281 parameters,
but without being a black box algorithm. The classifier f̂ω ,
with larger convolutional filter and slightly more parameters
(10 515), is however closer to the optimal test for huge data
set, which may be due to our LST approximation loss. This
experiment shows that learning long temporal dependencies
with long convolutional filters is detrimental during learning.
Our approach of learning long temporal dependencies in a
learned space of reduced dimensions, modeled by the LST
module, is a solution which guarantees explainability.

Fig. 3. Examples of learned filters ψf within ĥµ.

A few filters ψf are shown on Fig. 3. They are not very
noisy and they learn different frequency responses within a
same octave, as reflected by the different periodicities.

B. Experiments on public data set

To validate our approach, we test our LST module within
another CNN architecture on the ShipsEar data set [19], which
contains acoustic recordings from M = 11 vessel types.
The class H0 is composed of ambient recordings and some
parasitic recordings present in the data set. The class H1 is
composed of all the signals with vessel sounds. All recordings
are split into segments of 10 seconds with a same sampling
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frequency fs = 22050 Hz. We analyze all resulting segments
to keep only audible vessel signals in H1 and duplicate
segments from H0 to balance class samples and obtain a total
of 1412 training samples and 352 validation samples. Fig. 4
shows some typical spectrograms of the samples.

Fig. 4. Spectrogram of samples from H0 and H1.

Our architecture is tuned on the data set. Hence, our CNN
first includes a time dependant LST module by using an
average pooling filter ϕT , of duration T = 0, 25 seconds, in
place of the global average pooling operation ϕK in (16) :

S̃[x](s, f, t) = |x†s ⋆ ψf | ⋆ ϕT (t). (21)

The multiscale decomposition criteria for S is such that K
2S

≥
0.2 fs. Hence, S̃[x] gives a multi channel 1D output feature
of dimension (K/2S , S × F ) = (81, 112), by concatenating
the different scales of analysis s with the indexes f , with
S = 7 and F = 16. The CNN architecture is then followed
by a succession of 4 convolutional layers and average pooling
operations, with dimensions [(32, 16), (9, 24), (9, 32), (9, 48)],
as well as a global pooling operation and a final dense layer.

On the validation set, our model trained with the previous
procedure obtains an accuracy of 81, 25%. It is lower than
the 94, 3% obtained by [26] with a ResNet on the same data
set and a slightly different setting. The better performance of
ResNet is not surprising since it uses an aggregation of expert
features including Frequency Cepstral Coefficients (MFCC)
and Log-Mel Spectrogram. Our neural network is trained only
on raw acoustic signal with very few samples.

V. CONCLUSION

This paper proposed a LST CNN module that can efficiently
learn long temporal dependencies of cyclostationary signals,
while providing explainable representations. This module was
used in a class of explainable CNNs to mimic an optimal
Bayes detector structure for a ship noise classification problem.
The main difference with the first-order scattering transform
is the use of learned convolutional filters instead of predefined
wavelets, offering more flexibility for feature extraction.
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