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Abstract—Variational auto-encoders (VAEs) are powerful gen-
erative neural networks based on latent variables. They aim to
capture the distribution of a dataset, by building an informative
space composed of a reduced number of variables. However, the
size of this latent space is both sensitive and difficult to adjust.
Thus, most state-of-the-art architectures experience either dis-
entanglement issues, or, at the opposite, posterior collapse. Both
phenomena impair the interpretability of the latent variables.
In this paper, we propose a variant of the VAE which is able to
automatically determine the informative components of the latent
space. It consists in augmenting the vanilla VAE with auxiliary
variables and defining a hierarchical model which favors that
only a subset of the latent variables are used for the encoding.
We refer to it as NGVAE. We compare its performance with
other auto-encoder based architectures.

Index Terms—deep neural networks, variational inference,
generative models, unsupervised models

I. INTRODUCTION

Variational autoencoders (VAEs) are generative neural net-
works based on latent variables that are widely used for
many unsupervised complex tasks in the field of machine
learning, such as image or text generation. They consist of a
first network, called the encoder, that performs dimensionality
reduction and yields a compressed representation of the input
data in a latent space. The extracted features should capture
the generative factors of the data. Then, they serve as inputs of
a decoder used for reconstruction. The training is performed
by minimizing a loss function usually defined as the evidence
lower bound (ELBO). One of the major challenge of current
research is to build an interpretable representation of the
data within the latent space [1]. To this end, it is crucial to
properly set its dimension. A too small one results in correlated
variables whereas disentanglement is desired. The latter refers
to the case where the encoding variables are independent from
one another, each standing for a different generative factor
of the input data. Recent studies prove that it significantly
improves many common tasks in deep learning or representa-
tion learning [2] and allows to perform uncertainty studies on
the learned data. On the contrary, too many latent variables
lead to the posterior collapse phenomenon. It occurs when the
learned posterior distribution of the latent variables conditional
upon the input data matches the prior one. In this case, the
latent space do not contain any information and the inference
model generate images that are mostly an averaging of the
dataset [3]. To overcome this difficulties, different strategies
can be considered. In [4] and [5], it is proposed to add

inductive biases intrinsic to some generative factors, whereas
in [6], the objective function is modified. Some authors also
enrich the prior distribution [8] [9] [10]. However, most papers
are interested in the quality of the image generation without
taking into account the level of interpretability of the latent
variables. To better balance both objectives, [7] proposes to
regularize the loss function by enforcing more constraints on
the latent space. For that purpose, the similarity term between
the learned posterior law and the prior distribution, usually
defined by a multivariate centered Gaussian distribution with
identity covariance matrix, is weighted. The choice of the
weighting factor is intricate and dataset-dependent. As an
alternative, considering more complex prior distributions, as it
is the case in hierarchical latent models [9], results in getting
more information in the latent variables but induces in return
correlations between them.

The objective of our work is to propose a learning model
based on the vanilla VAE that automatically divides the latent
space in informative and uninformative components. We refer
to this new model as NGVAE for “Normal-Gamma Variational
Auto-Encoder”. It takes advantage of the fact that informative
latent variables are associated to small inferred variances
contrary to the ones that experience posterior collapse. The
principle is then to add a level of hierarchical knowledge about
the variances which become stochastic. They are assumed to
be distributed according to mixtures of two Inverse-Gamma
laws that enforce opposite behaviors, i.e. low or high values.
The probabilities of the mixtures are provided by the encoding
network, jointly with the mean of the encoding variables. This
enriched model favors the information to be carried by only a
subset of the latent space that is well-identified.

The remainder of the paper is organized as follows. In part
II, we review the standard VAE and its theoretical foundations.
Section III is dedicated to the proposed methodology and
section IV presents some experimental results. The developed
model is tested on a dataset of ours and compared with state-
of-the-art approaches based on variational inference.

The following notations are used throughout the paper:
N (x;µ, σ2) denotes the Gaussian probability density function
(pdf) with mean µ and variance σ2, G(x;α, β) the Gamma
pdf with hyperparameters (α, β) and NG(x, λ;µ, α, β) =
N (x;µ, λ−1)G(λ;α, β) the Normal-Gamma pdf.
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II. VARIATIONAL AUTOENCODERS

Variational auto-encoders find their origin in the principle
of variational inference. They consist in learning a structured
representation of input data x ∈ RD by leveraging the high
predicting capacity of neural networks. The rationale behind
this approach is to decompose the data distribution using a set
of hidden variables forming the latent space and stored in a
vector z ∈ RK :

p(x) =

∫
p(x, z)dz =

∫
p(x|z)p(z)dz. (1)

The true conditional distribution p(z|x) of the latent variables,
called the posterior law, is usually intractable. It is therefore
estimated by a distribution q(z) 1 that minimizes a similarity
measure often taken as the Kullback-Leibler (KL) divergence.
By taking advantage of the following equality

logp(x) = KL [q(z)||p(z|x)] +
∫

logp(x, z)q(z)dz, (2)

it can be noted that minimizing the KL-divergence between
the approximate and the true posterior pdfs is equivalent to
maximizing the second term of (2) which is the ELBO. By
using the mean-field approximation, it can be decomposed as
follows:

ELBO = E∼q(z|x)

[
D∑
i=1

logp(xi|z)

]
−

K∑
k=1

KL[q(zk|x)||p(zk)]

(3)
where xi stands for the ith component of the input data and
zk for the kth latent variable.

The emergence of deep learning made it possible to ex-
press the unknown distributions in (3) as complex parametric
functions of the input data. In this way, the inference problem
amounts to recover network parameters that are shared across
a whole dataset, making it amortized.

Fig. 1: (a) Graphic representation of amortized inference in the
context of variational-autoencoder. (b) Graphic representation
of the NGVAE model.

Building upon this principle, a vanilla-VAE is composed
of two neural networks. The first one, the encoder, yields
the mean and the variance of the approximated posterior

1In the sequel, the notation p is used for the actual distributions of the
variables and conversely q for the estimated ones

distribution qϕ(z|x) which depends on a vector ϕ that gathers
all the variables to be learned. This pdf is used to sample the
latent variables that are then processed by a decoder network.
The latter finally provides the mean of the likelihood pθ(x|z)
as a function of a vector of parameters θ. This distribution
can be used to simulate reconstructed data. The relationships
between the different quantities are illustrated in Fig. 1.

Most of the time, both the encoder and the decoder consist
of a series of convolutional layers. Their parameters ϕ and θ
are adjusted by minimizing the opposite of the ELBO using
stochastic gradient descent algorithms. In most common cases,
both the posterior and the likelihood distributions are defined
as a product of Normal laws. As for the prior p(z), it is chosen
as a Gaussian distribution with identity covariance, resulting
in a closed-form calculus of the ELBO.

III. THE NORMAL-GAMMA VARIATIONAL AUTO-ENCODER

The above-mentioned choice of prior distribution may
be restrictive. Indeed, when the dimension of the latent
space exceeds the actual number of generative factors of the
input data, two types of behaviors can be observed. On the
one hand, the variables carrying information are associated
with very low learned variance values. On the other hand,
the others experience posterior collapse and exhibit higher
variances. Thus, adding prior knowledge about these variances
makes sense to automatically bring out relevant components
within the latent space. For that purpose, the proposed
architecture extends the latter with the variances that are no
longer assumed deterministic. They are assigned distributions,
the parameters of which depend on the probabilities for the
corresponding variables to be informative. These probabilities
are obtained as additional outputs of the encoder and directly
yield a partition of the latent space in two classes.
The developed models are detailed hereafter. For the sake of
simplicity in the derivations, we infer the inverse-variances
of the latent variables instead of the variances. They are
gathered in a vector λ = (λ1, ..., λK) so that the encoding
variables become the pair of vectors (z,λ).

The encoder: In the proposed architecture, the hidden
space comprises both the latent variables and their inverse-
variances. The specificity of our modeling lies in the chosen
posterior distribution for the couples (zk, λk), with k ∈ J1,KK.
It is defined as a mixture of Normal-Gamma laws:

pϕ(zk, λk|x) =pkNG(zk, λk;µk, α1, β1)

+ (1− pk)NG(zk, λk;µk, α2, β2)
(4)

where the means {µk}k=1,...,K and the probabilities
{pk}k=1,...,K are both provided by the encoder. As for the
sets of hyperparameters (α1, β1), respectively (α2, β2), they
are defined to favor values close to 1, respectively 0, for λ−1

k .
However, such a theoretical model is not well-suited for

training by gradient descent. To avoid differentiability is-
sues, the straight-cut dependency between the probabilities
{pk}k=1,...,K and the Normal-Gamma parameters (α1, β1)
and (α2, β2) must be relaxed. In practice, we thus propose to
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associate each couple of latent variables with hyperparameters
(α(pk), β(pk)) that continuously depend on pk as follows:

α(pk) =fr(pk)

=
α2 − α1

1 + e−r(pk−0.5)
+ α1.

(5)

A similar function as (5) is considered for β(pk). The
parameter r allows to adjust the slope of the sigmoid fr(pk)
so that it acts as a threshold.

The decoder: The generative part of the NGVAE aims to
model the likelihood distribution pθ(x|z). It is not impacted
by the modified architecture since it does not leverage the
information from the variances. In the case when the inputs
are gray-scaled or colored pictures, the likelihood is usually
defined as a product of independent Normal distributions
pθ(xi|z) = N (xi|mi(θ, z), σ

2) where the mean parameter
mi is the output of the decoder network and the standard
deviation σ is an hyperparameter.

The objective loss: Training the NGVAE model consists in
optimizing the variational parameters ϕ and θ by maximizing
a ELBO loss using a stochastic gradient descent algorithm.
The enriched latent space results in a modified ELBO ex-
pressed as:

L(ϕ,θ) = −E∼qϕ(z,λ|x)

[
D∑
i=1

logpθ(xi|z)

]

+

K∑
k=1

KL [qϕ(zk, λk|x)||p(zk, λk)]

(6)

where it is worth noticing that the prior distributions are now
defined for the pairs (zk, λk). They are also chosen to be
Inverse-Gamma pdfs with hyperparameters (µ, α, β) tuned to
obtain non-informative laws. Finally, using Bayes’rule, the
KL-divergence can be split in two terms:

KL [qϕ(zk, λk|x)||p(zk, λk)] =

E∼qϕ(λ|x) [KL[qϕ(zk|λk)||p(zk|λk)]]

+KL[qϕ(λk|x)||p(λk)].

(7)

The loss (6) can be computed analytically. The first component
assesses the quality of the reconstruction. The term inside the
expectation can be expressed as the sum squared error between
the input and the output data, weighted by the variance of the
assumed Gaussian likelihood. Up to an additive constant, it
writes:

NLL =
1

2σ2

D∑
i=1

(xi −mi(θ, z))
2
. (8)

The KL-divergence terms in (6) admit closed-form expres-
sions. They can be derived by taking advantage of the formulas
of the KL-divergence between two gaussian pdfs and two

gamma pdfs, respectively. The ones related to the Gaussian
distributions become:

E∼qϕ(λ|x)

[
K∑

k=1

KL[qϕ(zk|λk)||p(zk|λk)]

]

=

K∑
k=1

1

2

α(pk)

β(pk)
(µ− µk)

2.

(9)

As for the terms corresponding to the Gamma distributions,
they can be developed as follows:

KL[qϕ(λ|x)||p(λ)] =
K∑

k=1

[
αlog

β(pk)

β
− log

Γ(α(pk))

Γ(α)

+(α(pk)− α)Ψ(α(pk))− (β(pk)− β)
α(pk)

β(pk)

]
(10)

where Γ(x) denotes the gamma function, and Ψ(x) the
digamma function.

The training: Training our model implies performing a
gradient descent on functions involving expectations with
respect to distributions depending on the unknown parameters.
This dependency makes it impossible to resort to sample
approximations as required to apply a stochastic optimiza-
tion procedure. As we depart from the classical Gaussian
assumption, the standard reparameterization trick cannot be
applied. We thus developed a new one. First, let us consider
the gradient to be backpropagated:

∇ϕ,θL(ϕ,θ) =−∇ϕ,θE∼qϕ(z,λ|x)[logpθ(x|z)]
+∇ϕKL[qϕ(z,λ|x)||p(z,λ)].

(11)

Since the KL-divergence term between two Normal-Gamma
distributions can be computed analytically, the second term
does not raise difficulties for the calculation of the gradient.
However, the expectation over the likelihood distribution is
more problematic and requires a specific reparametrization
over the z and λ stochastic vectors. By denoting v = (ϕ,θ)
the variational parameters and f(z,λ) = −logpθ(x|z,λ), we
propose to consider the following change of variables:

z = T2(ϵ2;v) = m(v) + (T1(ϵ1;v))
− 1

2 ϵ2

λ = T1(ϵ1;v)
(12)

where the vector m(v) stores the means computed by the
decoder and ϵ2 ∼ N (0, I). As for the definition of T1, we
follow [11] so that the kth component of the vector ϵ1 satisfies:

ϵ1,k =
log(λk)−Ψ(α(pk)) + log(β(pk))√

Ψ1(α(pk))
(13)

where λk, α(pk) and β(pk) implicitly depend on v. It should
be noted that this reparameterization has the advantage of
yielding a vector ϵ1 only weakly dependent on the parameters
v. The expectation in (11) can now be rewritten as a function
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of the new variables ϵ1 and ϵ2. Its gradient, denoted ∇NLL,
becomes:

∇NLL = ∇θ,ϕ

∫
ϵ1

∫
ϵ2

g(ϵ1, ϵ2;v)q(ϵ2, ϵ1;v)dϵ2dϵ1

=

∫
ϵ1

∫
ϵ2

∇θ,ϕg(ϵ1, ϵ2;v)q(ϵ2, ϵ1;v)dϵ2dϵ1

+

∫
ϵ1

∫
ϵ2

g(ϵ1, ϵ2;v)∇ϕ,θq(ϵ2, ϵ1;v)dϵ2dϵ1,

(14)

where g(ϵ1, ϵ2;v) = f(T2(ϵ2;v), T1(ϵ1;v)). Then, the tech-
nique of the score function [11] can be applied to the second
integral. It ensues:

∇NLL =Eq(ϵ1,ϵ2;v)[∇ϕ,θg(ϵ1, ϵ2;v)]

+ Eq(ϵ1,ϵ2;v) [g(ϵ1, ϵ2;v)∇ϕ,θlogq(ϵ1;v)] .
(15)

This final expression makes it possible, as expected, to replace
the expectations by empirical means in the stochastic gradient
descent.

IV. EXPERIMENTS

The ability of the proposed model to partition the latent
space is tested on a synthetic image dataset. Each image
consists in a 2D sprite simulated from five ground truth
generative factors which are the color, the shape, the position
in two dimensions and the depth, as it can be seen in Fig. 2.
In this section, we first present the experimental setup. Then,
we provide a set of quantitative and qualitative results so as to
get insights about the contribution of the NGVAE compared
to state-of-the-art variational inference techniques: a vanilla
VAE [12] as well as a β-VAE with β = 27 and β = 150 [7].
Regarding these values, β = 27 has been determined based
on the optimal choice suggested in [7].

Fig. 2: Example of reconstructed images after training the
NGVAE.

Experimental setup: For fair comparisons, all the encoders
and decoders share the same architectures. Therefore, every
mapping is composed of 4 convolutional layers with a stride of
2 and a kernel size of (3, 3). The first 2 layers of the encoders
contain 32 filters, and the last ones 64 filters. The decoders
are built as the reverse of the encoders. For both networks, the
Leaky Rectified Linear Unit is applied as activation function.
Finally, the standard deviation of the likelihood distribution is
set to 0,02 and the latent space dimension to 15. We use the
Adam algorithm as an optimizer with a learning rate of 10−3

and train each model until the training process reaches the
same stopping criterion. When the resulting losses of the five
last epochs do not vary over 1%, the learning rate is divided by
ten until the next five epochs are stable. The implementation
is carried out using Tensorflow framework.
Concerning the NGVAE hyperparameters, we set those of the

prior Normal-Gamma distribution to (0, 8.25, 3.62) and those
of the mixture of Gamma laws (α1, β1) and (α2, β2) to
(3.65, 0.24) and (902, 810.9), respectively. These have been
defined in a ad-hoc way until the latter distributions match our
assumptions.

Fig. 3: Mixture probability inferred by the encoder during
training for the first and the third latent variables.

Qualitative analysis: In the first place, we explore the
ability of the NGVAE to properly separate the latent space
in informative and uninformative components by visualizing
the mixture probabilities inferred by the encoder for each
latent variable all along the epochs as in Fig. 3. We recall
that when pk is close to 0, the kth variable is associated
with a low variance, and is therefore informative. It can be
observed that it takes several epochs for the probabilities to
converge. During the first ones, the reconstruction term is
prevalent and the selected posterior distribution is the one that
a priori minimizes the KL-divergence. It corresponds to a
mixture probability close to 1. Then, when the reconstruction
term has difficulties in improving, the model starts giving to
some components more information than to the others. After
convergence, the mixture probabilities make the identification
of the relevant latent variables possible. For the conducted
experiments, the NGVAE identifies 7 informative components
within the latent space.

For the purpose of refining the analysis, we also display
the empirical normalized covariance matrix of the inferred
latent variables over the whole dataset, as presented in
Fig. 4. In this way, we are able to visualize both which
components are impacted by the diversity of the dataset and
to which extent they are correlated with one another. The
results confirm our initial guess: the vanilla-VAE tends to
spread information over the whole latent space and there
is no disentanglement. Regarding the β-VAE architecture,
the outcomes are intrinsically linked with the value chosen
for β. Indeed, with β = 27, the results are similar to those
of the vanilla-VAE. However, with β = 150, the model is
able to emphasize a set of 7 informative variables. However,
the covariance matrix shows that all the latent variables are
impacted by the dataset diversity. Furthermore, the choice of
β is directly related to the dimensions of the latent space and
the data, which can be problematic for real-world applications.
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(a) NGVAE (b) β-VAE (β=150)

(c) β-VAE (β=27) (d) vanilla-VAE

Fig. 4: Scaled empirical covariance matrices of the latent
variables over the whole dataset. The colors getting closer to
yellow stand for values close to 1. Conversely, the others tend
to 0.

Finally, the NGVAE appears to focus the information on a
reduced subset of latent variables that are well decorrelated
with the others.

Quantitative comparison: To quantitatively compare the
methods, we introduce two metrics based on the empirical
covariance matrix described above. The first one is a measure
of the entropy of the diagonal terms, which is minimal when
few components exhibit high values and encode information.
The second one evaluates the decorrelation between the latent
variables by calculating the ratio between the trace of the
matrix and the sum of its non-diagonal values. In addition
to these metrics, we also report in Table I a disentanglement
metric described in [7] and the number of estimated informa-
tive components. The vanilla and the β-VAE are not designed
to select latent variables. However, for comparison purposes,
we apply a rule-of-the-thumb: a variable with an inferred
variance close to one is thus considered as uninformative. The
considered performance indicators are respectively denoted in
Table I : ”entropy”, ”decorrelation”, ”disentanglement” and
”information”.
The obtained results confirm the previous observations. In-

deed, between the four models, the NGVAE proves to get the
more uncorrelated latent space and the more parsimonious one.
It is also the only model that explicitly identifies the informa-

TABLE I: Quantitative analysis.

Metrics vanilla β-VAE(27) β-VAE(150) NGVAE

entropy 2.6 2.6 2.6 2.3

decorrelation 12.7 7.8 11.9 14.3

disentanglement 0.67 0.64 0.62 0.68

information 15 15 7 7

tive variables. The vanilla-VAE and β-VAE with β = 27, for
their parts, infer correlated latent space. Concerning the β-
VAE with β = 150, an interesting separation is made between
informative and non informative components but the encoded
variables remain very sensitive to the dataset diversity. This
results in a higher entropy of the matrix covariance diagonal
vector. However, none of these architectures is able to perform
a good disentanglement even if the NGVAE is slightly better.
This can be explained by the fact that they do not include
inductive biases related to the generative factors of the dataset.

V. CONCLUSION AND DISCUSSION

A novel VAE architecture is presented that automatically
defines the number of informative variables in the latent
space. It consists in randomizing the variances of the VAE
posterior distributions and assigning them a mixture model
that favors either low or high values. In our experiments, the
number of relevant components closely matches the number
of ground truth generative factors without the need of ad-
justing hyperparameters that can be dataset dependent. This
makes our model better suited to real-world applications.
The limitations of the NGVAE reside in the fact that the
required reparameterization trick for the training involves the
computation of a Jacobian matrix over the batches of data,
which is very computationally expensive. Also, the latent
variables are not well disentangled. Future research directions
include the extension to flat-hierarchical representations in the
manner of [14] and the application to state-of-the art datasets.
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