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Abstract—Recent years have witnessed a growing interest in
using deep learning for sleep state tracking. A key challenge in
doing so stems from the variability between different patients,
and a model trained using the data of several patients may
perform poorly on another subject. In this work, we study
mechanisms for achieving personalized sleep state tracking,
which can be utilized with various deep neural network (DNN)
architectures. Our design uses learned factor graphs to exploit
temporal correlation in a principled manner. Inspired by recent
advances in federated learning, we incorporate schemes based on
data and model interpolation for achieving personalized models.
Our experimental study demonstrates that this approach achieves
accurate classification with compact DNNs.

Index Terms— Sleep state monitoring, deep learning.

I. INTRODUCTION

Sleep disorders are known to affect a large portion of the general
population [1]. The diagnosis and treatment of sleep disorders highly
relies on the ability to accurately monitor the sleep stages of a
patient, which change over time [2]. Classification into sleep states
is often carried out manually based on the monitoring of multiple
bio-electrical signals, and particularly using electroencephalography
(EEG), electrooculogram (EOG), and submental electromyogram
(EMG). This procedure is quite cumbersome and relies on human
experts.

The unprecedented success of deep learning in the areas of
computer vision and natural language processing gave rise to a
growing research attention in its usage for sleep state tracking. The
model-agnostic nature of deep neural networks (DNNs) and their
ability to learn complex mappings indicate that they can facilitate
automatic sleep stage tracking, relieving the dependence on human
experts, while reducing the amount of monitored signals. Of particular
interest is the task of EEG-based sleep state classification, where
various DNN architectures utilizing convolutional networks [2]–[6],
recurrent neural networks [7], and attention mechanisms [8], were
proposed in the literature, as also surveyed in [9].

One of the key challenges in data-driven sleep state classifications
stems from the high inter-subject variability of EEG signals [9].
DNNs trained using measurements acquired from a set of patients
may thus perform poorly on a different subject. This can be tackled
by manually acquiring measurements from the specific subject to
be used for training. In fact, one can envision a patient going
through a first stage of supervised monitoring in lab conditions,
where personal measurements are acquired, followed by long-term
automatic monitoring using lightweight, possibly portable, sleep state
tracker. This motivates the proposal of mechanisms for training
personalized data-driven systems, in a manner suitable for lightweight
DNNs, which is the purpose of the current work.

In this work, we propose a framework for designing personalized
DNN-based sleep state classifiers, that can be combined with various
DNN architectures. Our design is based on identifying a set of
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established model assumptions on the expected behavior of EEG
signals and the latent sleep state. We build upon the Markovian model
for temporal evolution, utilizing the DNN to compute the function
nodes of the factor graph [10]–[13], rather than as a classifier.
The learned factor graph is combined with belief propagation (BP)
inference to exploit temporal correlation in a principled manner.

Then, we tackle the degrading effects of inter-subject variability.
This is achieved by extending the learned function nodes into a
deep ensemble [14], which improves accuracy and facilitates dis-
tributed implementation. We propose methods for training based on
a large collective dataset from other subjects as well as a small
personal dataset. We adapt personalizing concepts recently proposed
for federated learning [15]: The first approach trains the ensemble
using the complete dataset; the remaining two support reuse of an
ensemble trained with the collective dataset by either including an
additional personal model, or by learning to combine the ensemble
as a mixture-of-experts. Our numerical experiments, which use the
PhysioNet Sleep-EDF database [16], demonstrate that the proposed
combination allows achieving accurate recovery of over 88% with
90% detection for four out of the five sleep states, while utilizing a
simple compact DNN architecture.

The rest of this paper is organized as follows; Section II details
the system model. Section III presents the proposed sleep state
tracking system. Experimental results are reported in Section IV, and
Section V provides concluding remarks.

II. SYSTEM MODEL

A. Problem Formulation

We consider sleep pattern tracking from EEG measurements. The
measured EEG signal of a patient is divided into subsequent non-
overlapping segments, referred to as epochs [17]. The input is thus
a multivariate time sequence, denoted {yj

n}
Nj

n=1 for the jth patient,
where yj

n represents the nth epoch and has K features. Here, Nj

denotes the number of recorded epochs, which can change between
patients.

The measured EEG signal is related to the sleep state of the
patient, which changes in time along the recording. We consider
five stages of sleep: awake (AWA), REM, and non-REM sleep
stages (N1-N3). Assuming that each EEG epoch corresponds to a
single sleep state, we represent the sleep state of the jth patient
as a time sequence {sjn}

Nj

n=1, where each sjn takes values in S :=
{Wake,REM,N1,N2,N3}.

Our goal is to design a personalized sleep state tracking system.
Namely, for a patient of index k, we aim to find a mapping that
recovers the sleep states from {yk

n}
Nk
n=1. To design the personalized

mapping, we utilize data divided into two sets:

• Collective data - a large set of EEG measurements and
their corresponding sleep states taken from a set of pa-
tients J which does not include the current patient k, i.e.,
{{(yj

n, s
j
n)}

Nj

n=1}j∈J ;
• Personal data - a small set of EEG measurements and sleep

states taken from the kth patient comprised of Ñk < Nk epochs,
i.e., {(yk

n, s
k
n)}Ñk

n=1.
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B. Model Assumptions
To design personalized sleep state tracking, we introduce four

assumptions, which are utilized in the systems proposed in Sec-
tion III. These assumptions are based on accumulated knowledge
and established approximations regarding EEG signals and their
relationship with the sleep pattern.

A1 The statistical model relating the EEG signals and the sleep
states varies between patients. Thus, a tracking system suitable
for one patient may not be suitable for another.

A2 The statistical model relating the EEG measurements and the
state is quite complex and difficult to express analytically.

A3 Each EEG epoch is statistically related to its sleep state, which
is a random function of the previous state. Thus, the joint
distribution of the sleep states and the EEG measurements obeys
a Markovian model, i.e., for each patient j

P ({sjn,yj
n}

Nj

n=1) =

Nj∏
n=1

P
(
yj
n|s

j
n

)
P
(
sjn|sjn−1

)
. (1)

A4 The number of epochs in each EEG signal, i.e., the length
of the considered time sequences, is not fixed, and can vary
considerably between different patients and recordings.

III. SLEEP STATE TRACKING

In this section we introduce the proposed personalized sleep state
tracking system. Our design builds upon the model assumptions
A1-A4. The Markovian approximation A3 along with the varying
sequence length A4 motivate the usage of factor graph methods,
which facilitate inference over factorizable distributions of varying
length [18]. Accounting for the intractability of the model A2, leads
us to utilizing learned factor graphs, described in Subsection III-A.
We tackle the statistical diversity by combining ensemble models
with personalization mechanisms in Subsection III-B, and provide a
discussion in Subsection III-C.

A. Learned Factor Graphs
Factor graph methods facilitate inference from factorizable distri-

butions by message passing over a graphical representation of the
distribution known as a factor graph [19]. For the Markovian model
(1), the maximum a-posteriori probability (MAP) rule, whose com-
plexity grows exponentially with the sequence length, is computed
via message passing with complexity that grows linearly with Nj .

To see this, we define the function nodes

f j
n(y

j
n, s

j
n, s

j
n−1) := P

(
yj
n|s

j
n

)
P
(
sjn|sjn−1

)
, (2)

which can be used to form a graphical representation of the statistical
dependencies as a factor graph [19]. We can now write the MAP rule
ŝjn = argmaxsn∈S(s

j
n, {yj

n}) as

ŝjn = argmax
sn∈S

−→µ j
n(sn)

←−µ j
n(sn), (3)

where −→µ j
n(sn) and ←−µ j

n(sn) are the forward and back-
ward messages, respectively. These messages are defined as
−→µ j

n(sn) :=
(∑

s
j
1,...s

j
n−1

∏n
i=1 f

j
i (y

j
i , s

j
i , s

j
i−1)

)
, and ←−µ j

n(sn) :=(∑
s
j
n+1,...s

j
Nj

∏Nj

i=n+1 f
j
i (y

j
i , s

j
i , s

j
i−1)

)
, and are computed recur-

sively. This inference method (3) coincides with the BP algorithm
for hidden Markov models [19].

BP (3) computes the MAP rule for statistical models obeying
(1) in a manner which is invariant of the sequence length and
with complexity that only grows linearly with it. This makes factor
graph methods suitable for the problem based on assumptions A3-A4.
Nonetheless, to compute (3), one must evaluate the function nodes
(2), which may be intractable A2. Here, we exploit the presence of
data to learn the function nodes, as proposed in [10], using dedicated
DNNs.We note that the function nodes defined in (2) are comprised

of two terms: The state transition probability P
(
sjn|sjn−1

)
which can

be represented using an |S| × |S| = 5 × 5 matrix. This quantity is
estimated once via histogram; and the observations model P

(
yj
n|sjn

)
,

which maps an observation yj
n into |S| different values for each

possible state. This mapping is modeled as a classification DNN with
input yj

n and |S| = 5 categories, that is learned from data to minimize
the cross-entropy loss. Finally, we use the same learned model for
each function node. Namely the same DNN and histogram are reused
to estimate f j

n(y
j
n, s

j
n, s

j
n−1) for each observed yj

n.

B. Deep Personalized Function Nodes Ensemble
The usage of learned factor graphs detailed in the previous

subsection is suitable for the problem of sleep state tracking in light of
assumptions A2-A4, and previous applicatoins of this methodology in
other applications involving bio-medical data in [12], [13]. However,
the design does not specify which parametric model one must use
to learn the function nodes, i.e., which DNN should be used to
estimate the observation model. Here, we focus on the operation
of the learned function nodes, incorporating deep ensembles and
methods for exploiting the collective and personal data to achieve
personalized models.

1) Ensemble Function Nodes: To handle the heterogeneity
among different users A1, we design the learned function nodes
utilizing deep ensembles. Deep ensembles are scalable architectures
comprised of multiple diverse DNNs, which infer by aggregating the
individual predictions. Deep ensembles were shown to achieve high
accuracy and generalization performance in a manner that improves
with the number of individual DNNs, while being relatively robust
to statistical heterogeneity [14], [20], [21].

We train E > 0 diverse DNN classifiers, and combine their
outputs to estimate the observations conditional distribution [20].
Various strategies were proposed to achieve diverse DNNs to form
an ensemble, including data bagging [14] and regularization [20].
Here, we use a different random initialization for each DNN while
reusing the same data for training [21]. An illustration is depicted in
Fig. 1(a).

2) Personalization of Sleep State Classifier: We study three
approaches to utilize the collective and personal datasets, detailed in
Subsection II-A, to yield a personalized inference rule using deep
function node ensembles:

Presonalized Ensemble: The direct approach uses the complete
dataset, both collective and personal, to train the ensemble. The
advantage of this approach, also referred to as data interpolation
[15], is that all models in the ensembles are trained using a relatively
large dataset, out of which some portion reflects on the distribution
of the considered patient. This approach is expected to yield the
highest accuracy, as numerically observed in Section IV. The main
drawback is that the complete ensemble is trained anew for each
inspected patient in order to yield a personalized inference rule.

Modular Ensemble: This method uses the larger collective dataset
to train the ensemble, and the smaller personal dataset to train a
distinct classifier. During inference, the personal model is added to
the ensemble to boost personalized function node computations. The
main advantage of this approach is its modularity; one can train a
single collective ensemble that is reused for multiple patients by
combining with their personal trained model, as proposed in the
context of federated learning [15], [22]. This is illustrated in Fig. 1(b).

Mixture-of-Experts: An alternative modular approach that sup-
ports reuse of a learned collective ensemble replaces the averaging
of the models with a personalized learned combining. Here, each
model in the ensemble is trained using the collective data set, allowing
the ensemble to be reused among multiple patients. Then, for each
patient, the personal dataset is utilized to learn to combine the outputs
as a form of mixture-of-experts, as illustrated in Fig. 1(c).

C. Discussion
The proposed sleep state classifier is comprised of three main

components. The first is the usage of learned factor graphs to
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Fig. 1: Learned function models illustrations.

exploit the temporal correlation of the hidden sleep state process
in a principled manner, that can be combined with various DNN
architectures, using their output as an estimate of the function nodes
rather than as classifiers. The second component is the usage of
deep ensembles, which yield improved accuracy, particularly in the
presence of statistically heterogeneous data. These components allow
achieving accurate classification while utilizing lightweight DNNs, as
we numerically demonstrate in Section IV.

On top of the deep ensembles, we incorporate mechanisms for
personalization inspired by recent advances in federated learning,
where one also often deals with multiple models and non-i.i.d. data.
The personalized ensemble approach is based on data interpolation,
which personalizes by merging data sets, while the modular ensemble
and mixture-of-experts schemes follow a model interpolation ap-
proach, where models trained on different data sets are combined
for personalized inference [15]. In our numerical study we show that
personalized ensembles typically achieve the best accuracy among the
approaches, inline with similar findings in [15]. Nonetheless, model
interpolation may be preferred in some cases due to its modularity,
which allow a trained ensemble to be reused for multiple systems.

IV. EXPERIMENTAL STUDY

A. Experimental Setup
Our experimental study uses the PhysioNet Sleep-EDF Expanded

database [16]. This dataset consists of 197 whole-night PolySomno-
Graphic sleep recordings, containing EEG, EOG, chin EMG, and
event markers. As in [5], [7], we use 20 patients from one of the
two studies in this dataset that investigates the age effect in healthy
subjects, known as the Sleep Cassette (SC) dataset. We focus on
using a single EEG channel recording (channel Fpz-Cz), and apply
the feature extraction method proposed in [17] to the EEG epochs.
As a result, every segment of 30 seconds of recording are represented
using 150 features, i.e., K = 150. For each inspected patient of index
k, we use the data of the remaining patients as the collective dataset;
the first 80% of the segments of patient k are the personal dataset;
and the rest are used for test.

The basic DNN is a 5-layer fully-connected network. The hidden
layers are of sizes 1500, 800, 250, 100, and 5, with intermediate
ReLU activations and a softmax output layer. The network is trained
using stochastic gradient descent with learning rate 10−3, weight

decay 10−5, and momentum 0.9, over 600 epochs with a mini-batch
size of 64 samples. The relatively simple architecture is used to
capture the gains of each of the considered mechanisms, i.e., learned
factor graphs, ensemble function nodes, and the personalization
schemes. This DNN is used by the following systems:
• Collective: Here, E DNNs are trained using the collective

dataset, as in the leave-one-out approach [7]. We use both
E = 1 and E = 5 to quantify the gains of using ensembles
with output averaging compared to a single model.

• Modular: a modular ensemble comprised of E = 5 collective
DNNs and a single personalized DNN.

• - Mixture: a mixture-of-experts model with E = 5 models
trained on the collective dataset, combined using a weighted
average learned using the personal dataset.

• Personalized: An ensemble of E = 5 DNNs trained using the
complete dataset (both collective and personalized).

Each of these systems is used both as a classifier, namely, to recover
skn from the observed yk

n, as well as to estimate the conditional distri-
bution utilized for BP inference. For the latter, we use the collective
data to estimate the state transition probability via histogram. Setting
E = 5 was based on empirical trials, where increasing E while
training as in [21] was observed to hardly affect accuracy, as also
noted in [23].

B. Results
The results are summarized in Fig 2(c). We observe that the usage

of learned factor graphs , i.e., incorporating the model output into
BP inference rather than for direct classification, yields a consistent
improvement, which ranges from 0.83% to 4.1%. It is also observed
that utilizing ensemble models results in improved accuracy, where
the accuracy of the collective configuration increases by 1.1%−2.1%.
Furthermore, we note that incorporating the personalized data allows
improves accuracy compared to using solely the collective dataset.
This benefit, which is exhibited by all considered methods, is most
notable when observing the accuracy for patient index k = 12;
here, the collective models achieve at most 56% accuracy, while
the personalized systems achieve accuracy which varies from 76%
(mixture without BP) up to 90.3% (personalized with BP). Among
the proposed methods for utilizing the personal dataset, personalized
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Fig. 2: Confusion matrices for (a) mixture ensemble with BP and (b) personalized ensemble with BP; (c) Accuracy comparison.

deep ensembles achieves the best performance, with accuracy of
over 90% for 8 out of the 20 patients, and 88.2% on average
over all patients. Modular ensembles combined with BP achieves
comparable accuracy, with an average of 83%, while enabling to
reuse the collective ensemble among multiple patients.

Finally, as the sleep states are typically non-balanced, the accuracy
measure does not fully capture the performance. We thus evaluate the
confusion matrices for mixture ensemble with BP and personalized
ensemble with BP in Fig. 2(a)-(b), respectively. We observe that
for these leading models, a large portion of the errors reported in
Fig. 2(c) corresponds to confusing state N1, as also noted in [2].
The personalized ensemble model is shown to correctly identify
all states except for N1 with accuracy of over 91%, while using
a relatively simple DNN. This indicates the improvements one can
achieve by combining patient-specific data with collective datasets.
Doing so allows to realize personalized sleep state tracking systems
using designs exploiting domain knowledge and established model
assumptions.

V. CONCLUSIONS

In this work we studied methods for designing DNN-based per-
sonalized sleep state classifiers. We identified established assumptions
that capture some of the key properties of such setups, which were
used as domain knowledge in our design. We proposed inference
based on data-driven factor graphs combining deep ensembles with
personalized data. Our numerical results demonstrate the gains of
each of the components of our design, where the proposed personal-
ized ensemble with BP achieves over 90% for 8 out of 20 patients
while utilizing compact DNNs.
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