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Abstract—Remaining useful life (RUL) estimation is very
critical for planning the maintenance of machinery in various
industries. Deep learning models have gained popularity as the
key tools in estimating RUL. However, raw sensor measurements
are affected by multiple factors beyond the degradation level,
which is the primary goal of RUL estimation. This adversely
affects model training, especially in the lack of sufficient data.
To address the aforementioned issues, we propose to train an
artificial neural network (ANN) that captures the smooth and
monotonous degradation process. A siamese neural network
(SNN) model is used to train the ANN so as to minimize feature
variation across consecutive time instances while maximizing it
across changes in health conditions. The effectiveness of the
smooth features in RUL estimation is illustrated using turbofan
engine degradation simulation data set and degradation image
stream data set that are collected from rotating engines. We
further discuss that the new features can be individually used
to assess the health condition of the machinery without an RUL
estimator.

Index Terms—Deep learning, Siamese Neural Networks, Re-
maining useful life estimation, Multiple operating conditions,
Image prognostics, Predictive maintenance, Feature extraction.

I. INTRODUCTION

Estimating remaining useful life (RUL) which is defined as
the remaining time until a required repair/replacement of a
machine or component, is the central problem in predictive
maintenance [1]. RUL estimation methods can be classified
into three main classes, namely physics-based, knowledge-
based and data-driven methods [2]. In recent years, the data-
driven models dominate the RUL estimation studies as they
do not require the domain knowledge or physical model of
the system of interest [3]. Deep learning is becoming domi-
nant among the data-driven models thanks to the increasing
availability of computational power and sensor data [4].

In general, deep learning models ignore the domain knowl-
edge and model the RUL estimator as a black box from
input to output. This approach may affect the performance.
For instance, the performance of the suggested models on
multiple operating condition data is far worse than that under a
single operating condition set-up since the underlying smooth
and monotonous degradation process is suppressed by varying
operating conditions in the raw sensor signals. [5]–[8]. As a

trivial approach, increasing the complexity of the models, at
the cost of harder training (due to computation load and need
for larger data sets), may potentially increase the accuracy of
RUL estimation under multiple operating conditions [9], [10].
Although these studies reported improvement in RUL estima-
tions under varying operating conditions, the performance was
significantly inferior to non-varying conditions.

On the other hand, the redundancy in the multivariate raw
sensor signals may decrease the RUL estimation accuracy of
deep learning models. For instance, image and profile data
are commonly employed for industrial prognostics [13], [14].
However, with the scarcity of training data, the deep learning
models may fail to fully utilize the multivariate data in these
problems. The authors proposed two different architectures to
decrease the dimension and achieve a better RUL estimation
performance [15]. Although a better RUL estimation accuracy
than the classical methods is reported, the models are problem-
specific and generalizability is not verified.

This paper proposes to train a feature extractor neural
network using Siamese Neural Network (SNN) architecture
that robustly captures the underlying smooth and monotonous
degradation process. The robust sensor features (RSF) are
shown to improve the RUL estimation under complex se-
tups such as machinery with varying operating conditions
and multivariate sensor data. The efficiency of the proposed
method is demonstrated using a popular benchmark simulation
data set and infrared degradation image streams from rotating
machinery [16], [17]. Two separate deep learning models,
namely DCNN and LSTM networks, are adopted for RUL
estimation to demonstrate the performance of the RSF by the
feature extractor that is trained using SNN, in comparison
with the raw features for the simulation data. LSTM networks
with the RSF are also utilized for the RUL estimation in the
degradation image stream data.

II. SMOOTH AND MONOTONOUS (ROBUST) FEATURE
EXTRACTION METHODOLOGY

Two different neural network models are trained as feature
extractors from raw features using an SNN architecture. The
first SNN model includes two identical MLP branches that
are employed for the unidimensional multi-sensor data. The
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second SNN model has a pair of identical CNNs that extract
the features from multivariate sensor data. Pairs of raw features
are fed into the SNN, with twin branches, which are trained
so as to minimize the difference in the output (features) for
consecutive time windows and to maximize the difference
between time windows from the start and end of individual
recordings which are known to span the complete lifetime of
individual machines. One of the twin networks in the SNN is
used as the feature extractor.

A. Unidimensional Multi-Sensor Data

SNNs are the special types of neural networks that contain
twin sub-networks (with identical weights) connected through
an output layer, which may simply be a loss function. Various
types of ANNs such as LSTM, CNN, and MLPs, can be
utilized as sister networks. In general, multiple sensor mea-
surements are used to assess the degradation level of industrial
systems. An MLP network that consists of two hidden layers
with hyperbolic tangent activation is preferred for the twin
branches (so as the feature extractor) for the unidimensional
multi-sensor data since there is no predefined correlation
between the different unidimensional sensor measurements.
The number of output features is suggested to be fixed to
the number of input sensor measurements to achieve the same
degree of freedom.

The training data is prepared in pairs where each pair
is labeled/tagged for supervised training. The pairs are fed
into twin networks and the specially designed loss functions
compute a loss over the outputs of twin networks. The twin
networks are trained using a contrastive loss function as
described in Section II-C.

To achieve a better convergence, all the inputs (raw features)
are normalized to the [0, 1] range using min-max normalization
[18]. The network’s hyperparameters, such as the number of
neurons in the hidden layers, can be empirically optimized
using a validation set or by splitting the training set into
training and validation sets in the absence. The model with
the parameter weights which provides the best performance
on the validation set is selected and one of the twin networks
is used as the RSF extractor.

B. Multivariate Sensor Data

In most of the multivariate degradation data, such as image
and profile data, there are spatial or temporal correlations
between the neighbor values in the individual sensor mea-
surements. A convolutional SNN architecture can be used
to exploit the correlations in the multivariate data. Parame-
ter sharing through space or time decreases the number of
trainable parameters and prevents overfitting in a lack of
sufficient data. A 2-D CNN architecture is proposed to extract
the RSF from 2-D degradation data for generalizability. The
SNN architecture consists of three convolutional layers with
the maximum pooling layers, a dense layer, and a loss layer.
The obtained features are flattened after the third convolutional
layer and, hence 2-D input is mapped into a 1-D feature vector
by the CNN feature extractor.

The network is trained using the pairs where each pair is
labeled/tagged for supervised training as described in Sec-
tion II-A. The input values are normalized to [0, 1] range using
min-max normalization. The network’s hyperparameters, such
as the number of kernels in convolutional layers and maximum
pooling layers, can be empirically optimized using a validation
set. The model with the parameter weights which provides the
best performance on the validation set is selected and one of
the twin CNNs is used as the RSF extractor.

C. Feature Extractor Training with Contrastive Loss
SNNs were first proposed to learn a similarity metric [19],

[20]. The known sample is given to the first sister network and
the sample that is wanted to be verified is given to the second
one. The loss function measures the similarity of this pair.
It is desired that the sister networks generate representations
that have a low loss value for genuine, i.e., like pairs, and a
high loss value for fake i.e., unlike ones. The training of SNN
requires like and unlike pairs which should be created from
the individual degradation sensor recordings. In our case, the
like and unlike pairs refer to data from the same and different
health conditions, respectively.

For the like pairs, it is assumed that the health status of a
system at consecutive time instances remains unchanged in a
degradation sensor recording, hence the successive recordings
are used as the like pairs. For the unlike pairs, it is assumed
that very early measurements are from the healthy period and
the very late measurements are from the faulty period. Hence
pairs of recordings, one from the assumed healthy period and
one from the faulty period, are utilized to generate the unlike
pairs. We used an equal number of recordings from both
periods and used all pairs of these two sets as, unlike training
pairs.

Another critical issue is the loss function that is used in
the training of the SNN model. Let (x1i , x2i ) be the ith pair of
raw features and f(.;W) be the function that transforms raw
features to the new features, r1i and r2i , as,

r1i = f(x1i ;W), (1)
r2i = f(x2

i ;W), (2)

where W are the parameters to be learned. The contrastive
loss is defined as,

Li(yi, r1i , r2i ) = (1− yi)d(r1i , r2i ) + yi max(0,m− d(r1i , r2i ))
(3)

where yi is binary indicator which is equal to 0 for the like
pairs and 1 for the unlike pairs, d(r1i , r2i ) = ||(r1i − r2i )||22
and m is the margin. Minimization of L corresponds to
minimization/maximization of the distance between like/unlike
pairs. The margin m limits the intra-distance of unlike pairs
and affects only the range of the extracted features. The loss
is minimized with respect to W using the AdaGrad algorithm
[21].

D. RUL Estimation Using the RSF
The RSF can be used to assess the degradation of the

industrial machinery. One of the sister networks in the Siamese
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models is used as the feature extractor after the training. The
RUL estimation scheme is illustrated in Fig. 1.

Sensor  Measurement

Feature Extractor
Network Sister Network 1

Input 1 Input 2

Sister Network 2Parameter
Sharing

Loss Layer

Siamese Model for feature extractor training

RUL

Normalization Normalization NormalizationParameter
Sharing

Normalization

RUL Estimation
Model

Fig. 1: The general architecture of RUL estimation using the
proposed smooth and monotone feature extraction method. It
should be remarked that the RSF are also normalized before
estimating RUL.

Any RUL estimation model can be used together with
the RSF set, however, for the illustrative purposes only two
deep learning models, namely DCNN and LSTM networks,
are adopted for the RUL estimation. The individual sensor
measurements are normalized and then fed into the feature
extraction block. The RSF are also normalized to [0, 1] using
min-max normalization for a better convergence of the RUL
estimation model. Then, the RUL estimation model estimates
the RUL by using the normalized RSF. RUL estimators are
trained using a root mean square error as loss function since
the RUL estimation is a regression task. Adam optimizer is
employed for the minimization of loss [22]. The hyperparam-
eters of RUL estimators, i.e., number of layers in the models,
number of neurons, and activation functions, can be optimized
experimentally using a validation set as in the optimization of
the feature extractors’ hyperparameters.

III. EXPERIMENTAL RESULTS

The efficiency of the proposed feature extraction method
is assessed using unidimensional multi-sensor simulation data
and multivariate case study data. The simulation data is NASA
C-MAPSS data which is commonly used as a benchmark
data set for RUL estimation [23]. The case study data is a
degradation image stream data that is collected from rotating
machines [17].

A. Simulation Experiments

The RSF are compared with conventional features, which
are the raw sensor measurements in the given data set, us-
ing two popular deep RUL estimation architectures, namely
DCNN and LSTM [6], [7]. The RUL estimation results are
reported in terms of root mean square estimation error (RMSE)
and the score function that punishes the negative errors (i.e.

the true RUL is less than the estimated RUL) more than the
positive errors as,

Score =


∑n

i=1 e
−
(

T̂i−Ti
a1

)
− 1 , (T̂i,−Ti) < 0∑n

i=1 e

(
T̂i−Ti

a2

)
− 1 , (T̂i − Ti) ≥ 0

(4)

where T is the true RUL, T̂ is the estimated RUL, free-
parameters are chosen as α1 = 10 and α2 = 13 [16]. Lower
scores indicate better performance.

NASA C-MAPSS is a tool that is designed to simulate the
degradation of large turbofan engines [23]. RUL is defined
in terms of cycles. Multiple operating conditions-single fault
mode (MCSF) and multiple operating conditions-multiple fault
modes (MCMF) subsets of the data set are used for the
experiments. Each subset is divided into training and test sets.
The training set includes the sensor recordings of engines from
a healthy condition to failure. The sensor measurements in test
engines are available until an arbitrary cycle and RUL labels
are given at this cycle in terms of the number of cycles that
remains to the failure. The number of available training and
test samples are 260 and 259 for MCSF, 248 and 249 for
MCMF.

The feature extractor network’s hyperparameters are empir-
ically optimized using a validation set formed by randomly
selecting 10% of the training set. Both input layers have 21
neurons since there are 21 sensor measurements. The margin
value m = 1 is used for the training. The learning rate and the
number of epochs are set to 0.01, and 100, respectively, and
no early-stopping is employed. The minimum loss in SNN
training, with twin feature extractor MLP networks, on the
validation set is achieved with 64 and 128 neurons in the two
hidden layers of the MLP twins. The output layer provides
the almost same performance for the layer size of 14 to 25.
The network underfits for an output layer that has less than 14
neurons and overfits for the one that has more than 25 neurons.
The best performance is obtained using an output layer with
21 neurons. The Keras library is used for implementation and
simulations are run on GPU at Google™Colaboratory [24].

We trained and used identical LSTM and DCNN RUL esti-
mators with raw features and RSF separately, to comparatively
assess their RUL estimation performance. The former model
includes two LSTM layers that have 32 and 64 neurons,
respectively, with two fully connected layers that have 16
neurons with hyperbolic tangent activation. The output layer
is a linearly activated layer that regresses the estimated RUL
value. The hyperparameters were optimized based on the test
performance with raw features. Identical hyperparameters are
used in experiments with the RSF. The DCNN model does not
have inherent memory, hence a sliding window approach is
used to capture temporal information. The input of the DCNN
model is created as a 2D matrix with dimensions of L (the
size of the sliding window) by 21 (the number of features).
Window lengths are 20 and 15 for MCSF and MCMF data
sets because the shortest test sequences include only 20 and
15 cycles, respectively. The DCNN architecture consists of
four identical convolutional layers with ten 10 × 1 kernels
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TABLE I: The RUL estimation RMSE (mean±std) and score (mean±std) for DCNN, LSTM, hybrid [10] and biLSTM [9]
models with single and multiple faults, under varying operating conditions.

DCNN DCNN LSTM LSTM Hybrid Model [10] biLSTM Model [9]
Raw Features RSF Raw Features RSF Raw Features Raw Features

MCSF
RMSE 26.82± 1.23 18.28± 0.52 21.78± 2.41 13.07± 1.04 15.24± 2.65 25.11± 2.44

Score 11286± 3675 1966± 239 3694± 2067 776± 134 1282± 260 4785± 380

MCMF
RMSE 27.65± 1.69 20.73± 0.29 25.54± 3.14 15.17± 0.90 18.16± 2.17 29.12± 3.44

Score 12644± 6428 3134± 571 11527± 12341 1020± 135 1527± 322 6224± 450

and an extra convolutional layer with 3 × 1 kernel. Rectified
linear unit (ReLU) activation is used in convolutional layers.
The extracted 2D feature array is flattened and fed into a fully
connected layer with 100 neurons. The output layer with linear
activation regresses the estimated RUL.

The experiments from the training of the MLP feature
extractor to the RUL estimation are repeated 10 times to
report the confidence intervals. Keras Python library is used
for implementation and runs on Google Colaboratory [24].

Table I provides a comparison of the performance of LSTM
and DCNN RUL estimators with raw and extracted features,
together with the state-of-art hybrid and biLSTM models [9],
[10]. The RUL RMSE and estimation scores were improved
for MCSF and MCMF data sets both with DCNN and LSTM
RUL estimator. The LSTM RUL estimator with the RSF
performs better than both the hybrid and biLSTM models
reported in the literature for the same data set. In addition to
the improvement in mean RMSE, its standard deviation across
the test engines also showed a clear decrease, indicating a
more robust prediction and higher reliability. The LSTM RUL
estimator outperformed both the hybrid and biLSTM models,
both in terms of the mean and standard deviation of scores.

B. Case Study

The performance of the smooth in time feature extraction
method is demonstrated in a case study data that is collected
from a rotational machine set-up [17]. Only a limited number
of image degradation data samples are obtained from the
bearings from a brand new state to failure, because of the high
cost of accelerated degradation tests. Four degradation streams
that consist of 375, 611, 827, and 1478 images, respectively,
are available. To increase the number of samples for training
and testing, the original image streams are resampled. 284
streams of length between 17 and 55 are generated [13], [15].

Leave-one-out cross-validation is used for the experiments
and a total of 284 experiments are conducted. The time-to-
failure (TTF) estimation performance is evaluated in terms
of absolute percentage error. Tensor regression and two other
deep learning models are provided as benchmark RUL esti-
mators [13], [15].

Images in the degradation streams are two-dimensional
arrays with dimensions of 40, 20. In the experiments, a convo-
lutional SNN architecture is adopted to decrease the number
of trainable parameters since there are spatial correlations
between the neighbor pixels in the individual images. The

kernel sizes in the convolutional layers are fixed to 3 × 3
and the number of kernels is 8, 16, 16, respectively. Maximum
pooling layers are employed with a pooling size of 2×2. The
dense layer has 20 hidden neurons and the contrastive loss
that is described in Section II is used. Dimension of the input
images is decreased from 800 to 20 with one of the CNN
twins and features that capture the masked degradation are
extracted.

The RSF exhibit smooth and monotonous increas-
ing/decreasing trends from the starting point to the failure.
Values of the features at the starting and failure points are
similar. Therefore, it is claimed that the features themselves
can be used to assess the health status and estimate the RUL
of the monitored rotating machine. The lowest(highest) one
from the features that have an increasing (decreasing) trend is
chosen as the monitoring statistics. The average of the values
of this feature before the last 3 cycles in the training samples
is set as a threshold to prevent failure. This threshold provides
an alarm in the last 2− 5th cycles for all test samples before
the exact failure with an average of 3.2 cycles.

We trained and used only the LSTM network to estimate
TTF from the degradation streams since the LSTM network
performs better than DCNN in the simulation experiments. The
network includes two LSTM layers with 128 neurons and two
fully connected layers that have 64, 32 neurons with hyperbolic
tangent activation. The output layer is a linearly activated layer
that regresses the estimated TTF value. A weighted squared
error loss function is used in the training which is calculated
as follows:

C =

tf∑
k=tb

|k(TTFk − T̂ TFk)|2 (5)

where tb, tf are burn-in time and failure time, respectively.
The amount of information increases as time progresses, so as
the degradation, hence the late estimation errors are punished
more. Moreover, the TTF estimations start after a burn-in
period (3 in the experiments) to capture some time information
from the individual images. Keras Python library is used for
the implementation on Google Colaboratory [24].

Fig. 2 provides a comparison of the performance of the
LSTM RUL estimator with RSF, together with the tensor
regression method and the state-of-art deep learning models,
namely convolutional LSTM and LSTM with autoencoder
designed features in terms of mean absolute prediction error
and with respect to observation percentiles [13], [15]. The
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mean absolute prediction error of LSTM with the RSF is 0.060
on average which is lower than the errors of convolutional
LSTM (0.072) and LSTM with autoencoder-designed features
0.064 and slightly higher than the tensor regression’s error
(0.058). Although the LSTM RUL estimator with the RSF
performs worse in lower percentiles, its performance is very
close to the benchmark models at 50% observation percentiles
and superior to them for the higher percentiles, i.e., it provides
a better RUL estimation accuracy at the points that are close
to the failure and more critical for the maintenance planning.

20% 30% 40% 50% 60% 70% 80% 90%
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Fig. 2: The performance comparison of LSTM RUL estimator
with RSF, together with tensor regression and the state-of-
art deep learning based RUL estimators, namely convolutional
LSTM and LSTM with autoencoder designed features

IV. CONCLUSION

A novel deep learning-based approach is proposed in this
paper to extract features that are smooth in time. The RSF
extractor is trained using an SNN architecture. The effective-
ness of the RSF in RUL estimation is illustrated using the
C-MAPSS turbofan engine degradation data set and degrada-
tion image stream data set that are collected from rotating
engines. The proposed model assumes that the measurements
are recorded periodically. The performance of the method
under non-periodic recordings, i.e., missing data, needs to
be assessed. Further, in the lack of periodic recordings, the
training approach needs to be revised. In that case, it is
possible to build training pairs by annotating them with a
continuous likeness parameter that (eg. linearly) decreases
with increasing time difference between the measurements.
Extensions of the proposed approach to the machinery with
the non-periodic data is a prominent future research direction.
Moreover, the feature extractor can be further trained jointly
with the RUL estimator. Therefore, this is left for future
research.
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