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Abstract—To control air pollution and mitigate its negative
effect on health, it is of the utmost importance to have accurate
real-time forecasting models. Existing deep-learning-based air
quality forecasting models typically deploy temporal and—less
often—spatial modules. Yet, data scarcity emerges as a real issue
in this domain, a problem that can be solved by capturing the
data distribution. In this work, we address data scarcity by
proposing a novel conditional variational graph autoencoder. Our
model is able to forecast air pollution by efficiently encoding the
spatio-temporal correlations of the known data. Additionally, we
leverage dynamic context data such as weather or satellite images
to condition the model’s behaviour. We formulate the problem as
a context-aware graph-based matrix completion task and utilize
street-level data from mobile stations. Experiments on real-world
air quality datasets show the improved performance of our model
with respect to state-of-the-art approaches.

Index Terms—Air quality forecasting, conditional variational
graph autoencoders, context-aware graph-based matrix comple-
tion, deep learning.

I. INTRODUCTION

Air pollution has become a world-wide issue in the last
decades, hence the need for accurate air quality forecasting
solutions. To measure pollutant concentrations in urban areas,
mobile and fixed monitoring stations have been effectively
deployed. Fixed stations can collect measurements with high
temporal resolution, yet, they are expensive, hence their low
spatial resolution. On the contrary, mobile sensors allow for
high spatial resolution, however, their temporal resolution per
location is low since the sensors are mounted on moving vehi-
cles. Air pollution inference has been the preferred approach
to solve the issue of data scarcity due to missing measurements
and the uneven distribution of the observed data. Nevertheless,
inference is not sufficient if we wish to mitigate air pollution
effects, where forecasting might be of higher relevancy. This
renders spatio-temporal forecasting of air quality a highly
interesting task.

Various approaches have been proposed to predict future
pollutant concentrations using measurements coming from
ground-level stations, including shallow methods [1]–[6] and
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deep-learning approaches [7]–[9]. Shallow approaches are
based on physical models, statistical methods or shallow
artificial neural networks, amongst others [10]. Such models
require a deep understanding of complex particle dispersion
mechanisms, leading to computationally prohibitive complete
solutions and low performance in approximate solutions [10].
Recently, deep networks have emerged as a potential tech-
nology to extract complex features from high-dimensional
pollution data [11]. These models do not rely on strong
assumptions; instead, they require huge amounts of pollution
data and diverse context data such as weather or traffic.
As such, deep models have achieved promising performance
results in air quality forecasting [12], [13].

Very limited work has focused on air quality forecasting
using data collected by mobile stations [14]. In [13], we used
mobile stations from the City-of-Things (CoT) platform [15]
to tackle the task of air pollution estimation in unmeasured
locations, hence solving an inference problem. Contrarily, in
this paper, we focus on forecasting air pollutant measurements
at certain locations and at future time instants. Forecasting air
pollution measurements can be relevant for various applica-
tions in smart cities, including safeguarding public health, nav-
igating traffic levels or optimising city planning. For the task,
we employ pollution data collected from the CoT platform [15]
and Kunak sensors in the Bel-Air1 project. Unlike [13], where
additional knowledge was not considered, we leverage context
data to condition the model. We follow a data-driven approach
and formulate the air quality forecasting problem as a context-
aware graph-based matrix completion problem. Specifically,
we propose a novel deep learning model based on variational
graph autoencoders conditioned to the context data; we refer
to our model as cVGAE. The model is conditioned by other
data types such as weather, points of interest (POIs) or
satellite images and effectively captures the spatio-temporal
dependencies in the measurements. Experiments on real data
show that our method outperforms various reference models.

To summarize, the main contributions in our paper are:
(i) we formulate air quality forecasting as a graph-based
matrix completion problem and propose a variational graph
autoencoder with condition for accurate forecasting. To the

1https://www.imeccityofthings.be/en/projecten/bel-air
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best of our knowledge, this is the first work to leverage
conditional variational graph autoencoders to perform air
quality forecasting; (ii) the proposed architecture effectively
learns the spatial and temporal correlations of the air pollution
and context data via graph convolutional operations and by
imposing temporal and spatial smoothness constraints; (iii) we
present comprehensive experiments on real-world datasets and
achieve superior performance compared to other models.

The remainder of the paper is organised as follows. Sec-
tion II reviews related work. Section III presents the problem
and the proposed forecasting model. Section IV describes the
experimental results and Section V concludes our work.

II. RELATED WORK

A. Air Pollution Forecasting

Air pollution forecasting has been addressed by deploying
physical models [1], statistical methods [2], [3] and shallow
artificial neural networks (ANNs) [4]–[6]. Such approaches,
however, require specific domain knowledge and huge com-
putational power or do not capture the latent correlations
of air quality data with alternative data such as weather,
satellite images and points of interest (POI). Recently, deep
learning (DL) has matched the performance of traditional
shallow methods [16]. Spatio-temporal deep learning (STDL)
models, for instance, have proven their accuracy in air qual-
ity forecasting [10]. Methods in this category independently
couple temporal and spatial modules in a single architecture,
sometimes by incorporating context information [7], [9]—
from weather, traffic, etc—or by imposing objective con-
straints [8]. Our work belongs to the STDL category but
differs from existing methods in that we utilize a conditional
variational graph autoencoder, which allows to jointly learn
the latent spatio-temporal distribution of the known historical
data while conditioning the model to additional contextual
data. In the experiments section, we compare the performance
of our method against an statistical model—namely, the au-
toregressive integrated moving average (ARIMA) model, an
integrated version of [2]—and a STDL model—namely, the
GRU+DNN [17]—and demonstrate the superior performance
of our method in air quality forecasting.

B. Conditional Variational Graph Autoencoders

Variational autoencoders (VAEs) [18] are deep generative
models that have lately achieved impressive results in different
domains, including air quality forecasting [19], [20], and
prediction [21] or collaborative filtering [22]. Such models
propose an encoder-decoder architecture with fully connected
neural networks on non-structured data. Variational graph au-
toencoders (VGAE) [23] apply the idea behind VAEs in graph-
structured data, with applications in link prediction [23] and
graph generation [24]. Alternatively, conditional VAEs [25],
[26] impose a condition on both encoder and decoder inputs
to have control on the generative process. Conditional graph
VAEs (CVGAEs) were first introduced in [27] and later in [28]
to drive molecule generation. Similarly, [29] applies CVGAEs
on structure-aware writing. This work is similar to ours in that

it employs graph-based and constrained VAEs, however, we
are able to jointly learn the correlations in single architecture
rather than independent modules while aggregating additional
context data. To the best of our knowledge, no previous work
has tackled air quality forecasting with conditional variational
graph autoencoders.

III. PROPOSED METHOD

A. Problem Formulation and Notation

We solve the task of air quality forecasting at the street
network of urban areas; namely, we only consider street loca-
tions. For this, we are given multiple time series of pollutant
concentrations collected by mobile sensor-equipped vehicles
at certain locations. As the time and location associated to a
measurement are continuous, the measurements are aggregated
at discrete time instances and locations. We uniformly divide
the time span of the data into equal slots of duration tD (e.g.,
one hour). In a given timeslot t, we gather all measurements
within a predefined geographical distance r from a given
spatial location y on the street network and take their median-
value as the measurement at location y at timeslot t. Hence,
the aggregation across space is non-uniform and is adapted to
the considered locations on the street network. We summarise
the sets of time series in matrix X ∈ RN×T , with N and
T the number of considered geographical locations and total
time slots, respectively. Each row represents the time series
of pollutant concentrations in a certain location y within the
time span T ; equivalently, each column represents all the
measured pollutant concentrations at a certain time slot t.
Note that the aggregation process results in matrix X being
highly sparse. Let κ and τ denote the number of past and
future time instants with respect to present time t, that is,
the past measurements are X(t−κ,t] ∈ RN×κ and the future
measurements are X(t,t+τ ] ∈ RN×τ , with T = κ+ τ .

Apart from past pollutant concentrations, we collect con-
text knowledge in the considered locations. Specifically, we
process spatial features—namely, geo-coordinates, points of
interest (POIs), and satellite images—and temporal features—
namely, weather and the timestamp of the event. The aggre-
gation of the context data (see Section III-B) results in the
matrix C ∈ RN×d, where d is the predefined dimensionality
of the embedding.

In this work, we aim at forecasting the time series in
(t, t + τ ]. By learning the latent distribution of the known
past pollution data, we are able to perform forecasting at
future time instances. The predicted pollutant concentrations
are grouped in the matrix X̃(t,t+τ ] ∈ RN×τ .

B. The Proposed cVGAE Model for Air Quality Forecasting

The architecture of our forecasting model, which we refer
to as cVGAE, is depicted in Fig. 1. We consider the N
corresponding discretized locations on the street network and
build a graph of N nodes. Two nodes are connected if the
geodesic distance between them is smaller than a predefined
distance threshold δ, or if they belong to the same road
segment. The weight of a connection is the inverse of the
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Fig. 1. The proposed conditional variational graph autoencoder for air quality forecasting (cVGAE). Elements in red font depict that these are only available
during training; green elements are only activated during testing. During training, the input of the model consists of the sparse matrix X(t,t+τ ] and the
context matrix C.

⊕
applies a concatenation operation on the matrices. Light grey cells represent unmeasured locations at certain time instants. Prior and

recognition networks follow the architecture on the top-right dashed square, where the function blocks fGCN represent GCN layers and the variables µ and
σ describe the learnt Gaussian distribution. The output matrix X̃(t,t+τ ] contains the forecasted pollutant concentrations. Bold entries are the known values
on which we evaluate the loss function.
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Fig. 2. The computation of the matrix of context embeddings C. The spatial
and temporal additional knowledge are preprocessed and concatenated with
the encoded past pollution data to create a spatio-temporal embedding for
each considered location. These are grouped in matrix C ∈ RN×d which
serves as a condition and/or input in the proposed method.

geodesic distance in meters computed by the Haversine for-
mula [29]. The proposed model, which follows an encoder-
decoder architecture, is based on VGAEs and conditioned by
context information in C.

We build the matrix of context embeddings C from past
time instances i.e., within (t − κ, t] as depicted in Fig. 2. To
combine the spatial—coordinates, POIs, satellite images—and
temporal—weather and timestamp—context information with
the past air pollution data, we first preprocess the data to obtain
latent embeddings of each source of information. These are
later concatenated in a single context embedding of size d.

The encoder in Fig. 1 consists on two VGAEs, namely,
prior and recognition networks. Their architecture, equivalent
for both networks, is depicted in the dashed square of Fig. 1.
The prior network learns the prior distribution p(z|c) where
z and c are the latent variable and the context embedding
of a certain location. Similarly, the recognition network ap-
proximates the posterior distribution of p(z|x, c) where x is
the pollution time series for a certain location, i.e., x(t,t+τ ].
We wish to maximize p(x|c), hence the need to reduce the
Kullback–Leibler (KL) distance between p(z|x, c) and p(z|c)
in the loss function (see Section III-C). Note that during
testing, we only have access to past time instances, i.e.,
X(t,t+τ ] is unavailable. We reflect this condition by making
Z unavailable during testing, i.e., the recognition network is
ignored and the decoder employs Z′ as input.

The decoder in Fig. 1 consists on a generation network
whose input differs in the training and testing phase. During
training, the generation network handles the transformation
of Z, i.e., the data distribution generated by the recognition

network—conditioned by C the context knowledge—to the
matrix X̃(t,t+τ ] of air pollution forecasts. During testing, only
Z ′ is available. In this phase, we sample from the prior
distribution Z ′ and take as input C to forecast X̃(t,t+τ ].
For this task, we design two decoders; specifically, we test
an architecture of stacked GCN layers—which we refer to
as cVGAE in the experiments section—and an autoregressive
generative model—referred as cVGAE Autoregressive—which
aggregates stacked GRU layers prior to the GCN layers.

C. The Loss Function

The loss function of our model is defined in (1). We adapt
the loss function defined in [18] for a forecasting task by using
the mean absolute error (MAE) and correlation error—ℓ1 and
corr in (1), respectively—regularized by a KL divergence term.
Even though the MAE is not everywhere differentiable, we
find that using its sub-gradient is sufficient for optimization
with gradient descent. The temporal dependency between
measurements (ℓtemp) imposes an additional smoothness con-
straint. Additionally, we avoid model overfitting by applying
ℓ2-regularization on the network weights (ℓ2,W ):

L = ℓ1 + α(1− corr) + βD̄KL + λℓ2,W + γℓtemp (1)

where α, β and γ are positive tuning parameters and λ is the
weight decay parameter.

The ℓ1 norm computes the MAE between forecasted and
known pollutant concentrations as in:

ℓ1 =
1

|Ω|
∑
Ω

|X̃(t,t+τ ] −X(t,t+τ ]|. (2)

where Ω denotes the set of known entries on the training set.
Similarly, the correlation loss is computed between fore-

casted and known pollutant concentrations:

corr =
cov(X̃(t,t+τ ],X(t,t+τ ])

σX̃(t,t+τ]
· σX(t,t+τ]

(3)

where the covariance cov(·, ·) and the standard deviations σ
are computed on the elements in Ω.

Additionally, we avoid model overfitting by applying ℓ2-
regularization on the following network weights: matrices
W POI ,W s,W h,W r—which refer to the learnt weights,
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TABLE I
DESCRIPTION OF THE COT AND KUNAK NO2 DATASETS. THE UNITS ARE

PARTS PER BILLION (PPB) AND µg/m3 , RESPECTIVELY.

Dataset CoT Kunak
Number of locations 3630 4953

Duration in hours 720 1464
Max concentration 633.65 111.92
Min concentration 0.16 0.02

Mean concentration 85.50 32.88
% of known entries versus all 0.60 0.58

needed to process the POI, satellite images and past pollution
data and to produce the matrix of context embeddings C,
respectively—, matrices Wµ′ ,Wσ′ ,Wµ,Wσ—which de-
note the learnt weights to process the prior and recogni-
tion networks—and matrix WGCD—which denotes the learnt
weights for the decoder—. Note that the matrices µ′,σ′ and
µ,σ denote the means and standard deviations of the two
multivariate Gaussian distributions learnt by the prior and
recognition networks, i.e., Z ′ ∼ N (µ′, σ′) and Z ∼ N (µ,σ),
respectively. Furthermore, the KL divergence term DKL, which
can be computed with a closed form formula [18], calculates
the matrix of KL distances between data distributions Z ′ and
Z. The average of DKL is computed and incorporated in (1).

Finally, the ℓtemp term applies a smoothing constraint on the
air pollutant forecasts over time:

ℓtemp =
∑

w=1,...,wT

e−w
∑
i,j

∣∣∣X̃(t,t+τ ](i, j)− X̃(t,t+τ ](i, j + w)
∣∣∣
(4)

where X̃(t,t+τ ](i, j) is the element in the i-th row and j-th
column of X̃(t,t+τ ], i.e., the forecasted pollutant concentration
at location i = {1, . . . , N} and time instant j = {1, . . . , τ −
w}. The width of the neighborhood wT is a parameter that is
fine-tuned experimentally.

We minimize the loss function in (1) with respect to the
training entries using the stochastic gradient descent—where
we use the reparameterization technique in [18]—and we
deploy the dropout regularization technique to mitigate over-
fitting. After training, we obtain matrix X̃(t,t+τ ] containing
the pollutant concentration forecasts at future time instances.

IV. EXPERIMENTS

A. Description of the Datasets

We rely on the CoT platform [15] and Kunak sensors to
collect two datasets with NO2 air quality measurements in
the city of Antwerp, Belgium. The former corresponds to
measurements collected in May 2018 while the latter contains
measurements collected during March and April 2021.

The preprocessing of the data consists on the aggregation
step presented in Section III-A. We follow the settings pro-
vided in [13] and use tD = 1 h and r = 100 m, the graph
is built by setting δ = 200 m. The number of past time
slots is selected to be κ = 72 hours and the number of time
slots to forecast is set to τ = 24 hours. After processing, the
description of the datasets is presented in Table I.

B. Experimental Setting

To evaluate the proposed method, we divide the known
entries into train, validation and test sets. To reflect real-
time conditions where only past data is known at the time of
forecasting, the validation and test data points are selected to
be at a later date than the training data points. Specifically for
the CoT dataset, the training set is composed of the data points
collected before May 21, 2018, the validation set contains data
points collected between May 22-23, 2018, and the testing set
has data between May 24-31, 2018. Similarly, for the Kunak
dataset, the test set contains data between April 24-30, 2021,
the validation set has data between April 17-23, 2021, and the
rest is used for training. We compute three common evaluation
metrics, namely, the mean absolute error (MAE), the root mean
squared error (RMSE) and the correlation coefficient.

Certain parameters of the model are selected experimentally
through a random search optimization process: we find the
best results are obtained with one fGCN layer on prior,
recognition and generation networks, 100 epochs and an initial
learning rate of 0.001 and 0.0001 for CoT and Kunak datasets,
respectively. We make use of early stopping to avoid over-
fitting and a batch size of 12. The tuning parameters of the loss
function are set experimentally: the coefficient for correlation
loss to α = 1, the KL divergence coefficient to β = 0.5,
the temporal smoothness coefficient to γ = 0.001, the weight
decay to λ = 0.00001 and the temporal neighbourhood width
to wT = 3. The dropout rate is set to 0.5 on the GCN and GRU
layers in the encoder and decoder. In the computation of the
matrix of context embeddings C, we set the dimensionality of
all the embeddings (POIs, weather, timestamp, past pollution
and context) to d = 100. For all GCN layers, we use a
dimensionality of D = 512. We employ the ReLU activation
function to activate the linear and GCN layers, except for the
last GCN layer of the σ branches where the tanh(·) is used
since data is normalised in this range.

We test our model’s performance with respect to the models
presented in Section II. First, we compare against two baseline
models, namely, the GRU+GCN [17] deep forecasting model
and the statistical ARIMA [2]. Additionally, we compare
against state-of-the-art VAE models such as the original
VAE [18], VGAE [23] and conditional VAE [25]. All models
are trained in the same training set as the proposed model.

C. Results and Analysis

The forecasting performances are reported in Table II for
CoT and Kunak datasets. Note that the generative step of
VAE-based models is inherently randomized, i.e., sampling
z twice from q(z|c) will not yield the same results. For
robustness, we employ 4-fold cross validation on the VAE-
based models and report the standard deviation of these results.
ARIMA [2] provides the worst forecasting accuracy; this
is because this model follows a statistical approach where
domain knowledge and context data are not used. In contrast
to statistical models, [17] assumes the existence of latent
embeddings which characterize discrete locations, leading
to better performance results. It is evident that, in general,

1445



TABLE II
AIR QUALITY NO2 FORECASTING RESULTS.

CoT Kunak
MAE RMSE Corr Coef MAE RMSE Corr Coef

Imputation+ARIMA [2] 23.961± 0.069 17.123± 0.041 0.214± 0.011 23.549± 1.026 28.631± 1.142 −0.266± 0.131
GRU+DNN [17] 20.481± 0.085 25.049± 0.088 0.303± 0.0012 17.863± 0.971 23.010± 1.057 0.054± 0.124

VAE [18] 17.304± 0.083 21.696± 0.124 0.257± 0.001 16.915± 0.631 22.069± 0.051 0.275± 0.038
VGAE [23] 16.810± 0.036 21.199± 0.042 0.275± 0.006 17.355± 0.731 22.587± 0.631 0.220± 0.038
CVAE [26] 17.189± 0.058 22.509± 0.071 0.346± 0.004 17.355± 0.531 22.587± 0.606 0.099± 0.059

cVGAE⋆ 15.899± 0.079 20.319± 0.051 0.361± 0.049 16.534± 0.019 21.530± 0.004 0.209± 0.046
cVGAE Autoregressive⋆ 20.769± 0.089 26.230± 0.119 0.305± 0.006 15.553± 0.135 20.671± 0.262 0.247± 0.099

VAEs obtain better forecasting accuracy; we argue this is
due to their encoder-decoder scheme. Amongst them, our
cVGAE models—denoted by ⋆ in Table II—achieve the best
performance for RMSE and MAE while reaching comparable
results in the correlation coefficient score. While the cVGAE
autoregressive model outperforms other methods in the Kunak
dataset, it shows worse performance in the CoT dataset. We
argue this is due to the small size of the CoT dataset, which
results in the model overfitting in datasets of short temporal
spans.

V. CONCLUSION

Mobile stations are a promising approach to instantly mea-
sure air pollutant concentrations. The collected measurements
have high spatial density but suffer from low temporal res-
olution at each location. We argue that learning the latent
distribution of past and context data per location with a VAE
architecture allows to solve the issue. In this setting, we
formulated the air quality forecasting problem as a graph-
based matrix completion problem. To solve it, a variational
graph autoencoder with condition was proposed. The presented
model has shown to deliver high-quality forecasting by effec-
tively capturing the context knowledge and the spatio-temporal
correlations in the measurements. The model outperforms
state-of-the-art methods in air quality forecasting. Future work
will aim at generalizing the application domain of the cVGAE
to other graph-structured real-world data (e.g., social media
data, IoT data).
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