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Abstract—Effective fault diagnosis of rolling bearings are vital
for the reliable and smooth operation of industrial equipment.
Early fault detection and diagnosis of rolling bearings are
required to avoid catastrophic failures and financial losses. In
this paper, we propose a new sophisticated Multiscale Dispersion
Entropy (MDE) based feature that uses a nonlinear mapping
approach using a Generalized Gaussian Distribution (GGD)–
Cumulative Distribution Function (CDF). First of all, the pro-
posed feature extraction method is used to extract the features
from a raw 1-D vibration signal and the candidate feature of each
vibration signal is selected by analysing the standard deviation
of the features. Then, the features are used as input to a Multi-
class Support Vector Machine (MCSVM) model for categorizing
rolling bearing fault conditions. The findings demonstrate that
the proposed method is better in terms of classification accuracy,
precision, recall and F1–score as compared to other entropy
feature driven classification models.

Index Terms—Dispersion Entropy; Bearing Fault Classifica-
tion; Generalized Gaussian Distribution; Multi-class Support
Vector Machine; Multiscale Dispersion Entropy

I. INTRODUCTION

Rotating machinery is extremely important in modern in-
dustry, and the failure of critical component such as rolling
bearing in the machinery may lead to machine breakdown and
catastrophic accidents. As a result, in recent decades, condition
monitoring (CM) of rotating machinery has gained more
popularity. Rolling bearings fault diagnosis is an important
aspect in the CM plan in the industry. Analyzing the vibration
signal is one of the most common methods for determining
the condition of a rolling bearings. Recently, many types of
Entropy measures are widely used in different domains to
study the degree of randomness in the time series data, and
extensively used in rolling bearings fault diagnosis system [1]–
[11]. Some commonly used Entropy based measures in rolling
bearings fault analysis are Sample Entropy (SE) proposed by

[12] is used in [6]–[8], Permutation Entropy (PE) proposed
by [13] is used in [1], [6], [9], Weighted PE proposed by
[14] is used in [1] and Dispersion Entropy (DE) proposed by
[15] is used in [6]. SE, PE, WPE and DE measures are used
to quantify the signals on a single scale, which may be not
conducive to the extraction of signal features.

Some types of multiscale entropy measures used in rolling
bearings fault analysis are Multiscale Entropy (MSE) proposed
by [16] used in [3], [8], [11], Multiscale Dispersion Entropy
(MDE) and Refined Composite MDE (RCMDE) proposed by
Azami et al. [17] were applied to extract features from the
vibration signal in [2], [11] and [4], [5], [10], [11] respec-
tively. MDE and RCMDE method addresses the shortcomings
observed in MSE, such as undefined and unstable for short
signals [17]. The Normal Cumulative Distribution Function
(NCDF) maps the input signal from 0 to 1 in DE, MDE,
and RCMDE methods. As suggested in [17] to use other non-
linear mapping approach, in this work, Generalized Gaussian
Distribution (GGD) Cumulative Distribution Function (CDF)
is selected instead of NCDF. In addition to the Gaussian
distribution [20] parameters, GGD model has one more pa-
rameter, shape parameter β. The proposed novel Generalized
Gaussian Distribution–Multiscale Dispersion Entropy (GGD–
MDE) measure is used with different scale factors and shape
factor to extract the multiscale features from the raw vibration
signal to formulate a feature pool.

Feature selection is essential after feature extraction to
reduce feature dimension and computational burden during
the training process. As motivated by [18], the GGD–MDE
feature cluster that has the lowest standard deviation (SD)
among the different shape parameters is selected to form a
primary feature pool. Finally, the primary feature pool is used
to train a Multi-class Support Vector Machine (MCSVM) to
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classify the bearing fault type with the fault severity level. The
effectiveness of the proposed method is validated by using
experimental data set. The main contributions of this paper
are given as follows:

1) A novel GGD–MDE is proposed to extract the multi-
scale entropy-based feature from 1-D signal.

2) A new rolling bearing fault diagnosis method based on
GGD–MDE and MCSVM is formulated.

The structure of this paper is as follows: in section II, the
proposed method and the theoretical background of GGD–
MDE and MCSVM are briefly introduced. In section III,
results and discussion is presented and in section IV, the
conclusion is presented.

II. THE PROPOSED METHOD

The simplified flowchart of the proposed rolling bearing
fault diagnosis method is shown in Fig. 1 and the overall
process of the proposed fault diagnosis approach is as follows:

A. Sensor Data Acquisition

Initially, acquire the vibration signal and label them suitably.
In this study, the bearing vibration data set as shown in
Fig. 2, available in [19] is used for training and testing
purposes. Based on the condition of the bearing, the signals are
labeled as ’Normal’ for bearing without any fault, ’ORF007’,
’ORF014’ and ’ORF021’ for bearing with ’Outer Race Fault’
category, ’BF007’, ’BF014’, ’BF021’ for bearing with ’Ball
Fault’ category and ’IRF007’, ’IRF014’, ’IRF021’ for bearing
with ’Inner Race Fault’ category, totaling 10 (B) rolling bear-
ing vibration signals. After indexing the data set, the feature of
each data set is extracted as explained in the following section.

B. Feature Extraction

DE proposed by Rostaghi and Azami [15] with a new map-
ping method is resulted in Generalized Gaussian Distribution
- Dispersion Entropy (GGD–DE) method. Further, GGD–DE
is used in developing a novel GGD–MDE method. For feature
extraction, initially, the vibration signals are divided into ’P’
number of non-overlapped segments with 1K (1024) samples

Acquire the vibration
signal and label
them suitably

Is feature
sets

available?

Set the count
of the vibration

signals. Let B=10,
Normal=1, BF=3,

IRF=3, ORF=3

Initialise the segment
size as 1024 samples,

feature length as P,
shape parameter β

as 1 to 3 steps of 0.1

For each signal,
compute GGD-MDE

using Equation
(2) for each

segment and each β

Load all feature sets
with the output label

Test the model using
testing data set. Plot

confusion matrix
and other metrics

Select the primary
features. Divide

training and
testing data

Initialise MCSVM
model and train
the model using
training data set

No

Yes

Fig. 1: Flowchart of the rolling bearing fault diagnosis method.

per segment. The feature-length ’P’ is set as 110. Then, for
each segment the GGD–MDE features are calculated for the
different shape parameter β.

1) GGD–MDE: Assume that each segment of vibration
signal is a univariate signal of length N: u = u1, u2, ..., uN ,
where N = 1024. The signal u is coarse-grained by dividing
into

⌊
N
τ

⌋
non-overlapping segments with the length of scale

factor τ , and then the average of each segment is calculated
as proposed in [17]:

xτ
j =

1

τ

jτ∑
b=(j−1)τ+1

ub, 1 ≤ j ≤
⌊
N

τ

⌋
(1)

where xτ
j denotes the j-th coarse-grained time series of u.

Finally, the Entropy value using GGD–DE is calculated for
each coarse-grained signal by considering as x with the length
L, the GGD–DE is calculated as follows:

Step 1: Initially, x = x1, x2, · · · , xL are mapped to y =
y1, y2, · · · , yL from 0 to 1 using the CDF of GGD which is
defined as:

y =
1

2
+ sgn(x− µ)

γ̂

[
1/β,

(
|x−µ|

ρ

)β
]

2Γ(1/β)
(2)

where γ̂ denotes the lower incomplete gamma function, Γ
denotes the gamma function, ρ is the scale parameter given

Fig. 2: Sample waveform of normal and fault conditions. ’Normal’
for bearing without any fault, ’BF007’, ’BF014’, ’BF021’ for bear-
ing with ’Ball Fault’ category, ’IRF007’, ’IRF014’, ’IRF021’ for
bearing with ’Inner Race Fault’ category, ’ORF007’, ’ORF014’ and
’ORF021’ for bearing with ’Outer Race Fault’ category.
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Fig. 3: GGD-RCMDE values of all working sample data set, when (a) β = 1 (b) β = 2 and (c) β = 3 at scale factor=15

by ρ = σ
√

Γ(1/β)/Γ(3/β), µ is mean and σ is standard
deviation of the signal x, and y values are the probabilities
that a random variable from the GGD, with µ and σ of the
entire signal x, is less than x value from the time series x.
The β determines shape of the distribution, e.g., the Laplacian
for β = 1, the Gaussian for β = 2 and close to Uniform
distribution by letting β = ∞ [20].

Step 2: Then, each yj , where j = 1, 2, . . . , L is assigned a
class from 1 to c by linear algorithms as follows:

zcj = round (c · yj + 0.5) j = 1, 2, . . . , L (3)

where zcj denotes the j-th member of the classified time series.
Step 3: The embedding vector zm,c

i with dimension m and
time delay d are generated using the following equation:

zm,c
i =

{
zci , z

c
i+d, · · · , zci+(m−1)d

}
i = 1, 2, · · · , L−(m−1)d

(4)
then, each time series zm,c

i is mapped to a dispersion pattern
πv0v1···vm−1 , where v0 = zci , v1 = zci+d , · · · , vm−1 =
zci+(m−1)d. The total possible number of dispersion patterns is
cm.

Step 4: The relative frequency of each potential dispersion
patterns p

(
πv0v1···vm−1

)
can be given by:

#
{
i|i ≤ L− (m− 1)d, zm,c

i has type πv0v1...vm−1

}
L− (m− 1)d

(5)

where # means the number of dispersion patterns of
πv0v1···vm−1

that is assigned to zm,c
i .

Step 5: Lastly, according to Shannon’s definition of entropy,
the GGD–DE value with embedding dimension m, the number
of classes c and the time delay d is computed as follows:

GGD-DE(x,m, c, d, β)

= −
∑cm

π=1 p
(
πv0v1...vm−1

)
· ln

(
p
(
πv0v1...vm−1

)) (6)

For each signal, the GGD–MDE measure of each segment
with the different shape parameter β (1 ≤ 0.1 ≤ 3) are
calculated and stored as a feature pool (FP) having the
dimension given by B × P × step count of β × τ .

The parameters used in this work are the embedding dimen-
sion m = 4, the number of classes c = 6, the time delay d =
1, scale factor τ = 15 as suggested in [15].

2) Feature Selection: Fig. 3 shows the GGD–MDE features
for β = 1, 2 and 3 of ’P’ segments for all ’B’ vibration
signals. For each signal, the GGD–MDE feature cluster from
FP that has the lowest standard deviation (SD) among the
different shape parameters is selected to form a primary feature
pool. Then, the primary feature pool is divided for training
and testing purposes based on the pre-defined ratio such as
(40:60, 60:40, 80:20). Then, the training data is used to train
the MCSVM classifier.

3) MCSVM Model: Support Vector Machine (SVM) is a
binary classifier for learning and separating algorithm in pat-
tern recognition tasks [21]. This study requires classification
of different bearing faults, which is a multiclass problem.
Directed Acyclic Graph (DAG), Binary Tree (BT), One-
Against-One (OAO), and One-Against-All (OAA) are some
of the MCSVM classification models [22]. In OAA, a specific
category label in the input is trained as one class (positive
class), while the rest of the input is trained as a negative class.
As a result, each classifier predicts whether test data belongs
to a specific class or not. Therefore, a J output class problem
(J ≥ 2), J number of binary SVM classifiers are constructed.
In this work, OAA MCSVM with Gaussian kernel function is
used as a classifier [21], [23].

III. RESULTS AND DISCUSSIONS

To demonstrate the performance of the proposed method, we
selected the experimental data set provided by Case Western
Reserve University (CWRU) for training and testing phase of
our work [19]. This data set has been widely used by many
researchers, hence it is appropriate to benchmark our work
against their findings.

A. Case Western Reserve University Bearing Data

The vibration data collected form the drive end bearings
were used in our study. The test bearings such as normal and
faulty bearings are mounted on the shaft of the motor. The
artificial faults in the bearings were created at a particular
location such as rolling element, inner raceway and outer
raceway with fault diameters of 0.007, 0.014 and 0.021 inches.
In this study, the drive end vibration data is collected at 12000
samples/second for 0 hp load is used. Few description of the
data set is listed in Table I and more details can be found in
[19].
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(a) (b)

Fig. 4: The confusion matrix of (a) GGD-MDE method and (b) MDE (NCDF) method with 10 primary features and 0.6 training ratio.

B. Experimental Results

The Entropy values such as SamEn [6], [7], PerEn [6],
Weighted PerEn [1], DE [4], [6] were discussed and presented
in the literature for rolling bearings fault classification. As
compared to the single scale DE measure [4], [6], multiscale
entropy measures such as MSE [3], improved MDE [2] and
RCMDE [4], [5] were shown better performance.

Entropy values of each segment for various multiscale
methods such as MDE, MSE, RCMDE and GGD–MDE are
extracted from the raw vibration signal. Entropy values of each
method for all scales with the suitable class label forms a
feature pool of that method. The following discussion shows
how GGD–MDE features are used for rolling bearings fault
diagnosis.

The feature pool comprises of 23100 × 15 data (10 signals
× 110 segments × 21 steps of β × 15 scale factor). The
SD of 110 segments for 21 shape parameters is computed
for a signal, and the cohort with the lowest SD is chosen to
construct a primary feature pool. This process is repeated for
all signals, resulting in a primary feature pool of 1100 × 15

TABLE I: Description of Case Western Reserve University bearing
data set [19].

Category Fault size Class File Standard DSF
(inches) label name deviation

Normal Normal 97.mat 0.0462 2.7
0.007 BF007 118.mat 0.1256 1.6

Ball Fault 0.014 BF014 185.mat 0.1491 3
0.021 BF021 222.mat 0.0954 1.0
0.007 IRF007 105.mat 0.0869 1.3

Inner Race 0.014 IRF014 169.mat 0.1763 3.0
Fault 0.021 IRF021 209.mat 0.1561 3.0

0.007 ORF007 130.mat 0.1658 1.0
Outer Race 0.014 ORF014 197.mat 0.1304 1.0
Fault 0.021 ORF021 234.mat 0.1354 1.9

features. The β value at which the lowest SD of GGD–MDE
values is attained to build a primary feature pool is shown in
the distinct shape factor (DSF) column of Table I.

The primary feature pool data set is divided into two groups
according to a pre-determined ratio, commonly referred as
training and testing data set. This experiment considers three
distinct training (0.4, 0.6, 0.8) and testing (0.6, 0.4, 0.2)
ratios. Considering the total number of primary features, the
training ratio 0.4 implies that 440 randomly selected features
are used for training and the remaining 660 feature set are
used for testing. The model is evaluated using the test data
set after successful training, and performance metrics are
produced using the confusion matrix. The Table II shows the
performance metrics for all methods against the training ratio
and the number of features. The following formulae is used
to calculate the accuracy, precision, recall, and F1–score.

Acc = TP+TN
TP+FP+FN+TN

Pre = TP
TP+FP

Rec = TP
TP+FN

FS = 2 ∗ Precision.Recall
Precision+Recall

(7)

where TP is true positive (for example: actual label ‘IRF007’,
predicted as ‘IRF007’), FP is false positive (actual label is
not ‘IRF007’, predicted as ‘IRF007’), FN is false negative
(actual label ‘IRF007’, predicted as other label) and TN is true
negative which is the number of the accurate predictions of
the other labels with respect to TP. The proposed GGD-MDE
feature driven MCSVM classifier has the best classification
accuracy (99.6%), better precision (0.98), recall (0.98) and
F1-Score (0.98) as compared to the other methods proposed
in [1], [2], [4] for the CWRU data set fault classification.
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TABLE II: The average classification accuracy (Acc), precision (Pre),
recall (Rec) and F1–score (FS) of MDE, RCMDE, MSE, and GGD-
MDE techniques with various feature lengths and training ratios. The
total number of features are 1100, training ratio of 0.6 implies that
660 are used for training and 440 are utilized for testing. The best
classification metrics are in bold font.

Method TR
Count of features=5 Count of features=10
Acc Pre Rec FS Acc Pre Rec FS

MDE
0.4 96.9 0.85 0.83 0.82 97.3 0.87 0.86 0.86
0.6 96.9 0.85 0.82 0.82 97.6 0.88 0.88 0.87
0.8 97.1 0.85 0.84 0.83 97.6 0.88 0.88 0.87

RCMDE
0.4 97.7 0.89 0.88 0.87 98.7 0.94 0.94 0.94
0.6 97.8 0.89 0.89 0.87 98.8 0.94 0.94 0.94
0.8 98.0 0.90 0.90 0.88 98.9 0.95 0.95 0.95

MSE
0.4 96.0 0.80 0.79 0.79 97.2 0.86 0.86 0.86
0.6 96.2 0.81 0.80 0.80 97.5 0.87 0.87 0.87
0.8 96.4 0.82 0.81 0.81 97.4 0.87 0.87 0.87

GGD-MDE
0.4 99.3 0.97 0.97 0.97 99.6 0.98 0.98 0.98
0.6 99.4 0.97 0.97 0.97 99.6 0.98 0.98 0.98
0.8 99.3 0.97 0.97 0.97 99.6 0.98 0.98 0.98

IV. CONCLUSION

In this paper, a new GGD-MDE feature driven rolling
bearings fault diagnosis method is proposed with the support
of MCSVM. The proposed GGD mapping technique in MDE
measure is a novel method that helps to extract multiple
features from the raw vibration signal for a change of shape
parameter β. A feature pool is formed by calculating the
GGD–MDE value of the rolling bearing vibration data. Then,
the primary feature pool is formed by analysing the SD of
the features of a signal for each shape factor. Further, a part
of the primary feature pool is used to train the MCSVM for
classifying the normal and fault conditions and the remaining
is used for testing. The proposed method with the new feature
set is capable of classifying the bearing fault better than
other multiscale entropy measures such as MSE, MDE and
RCMDE. The statistical measures show that the proposed
method is effective in bearing fault diagnosis as compared
to the other methods considered in this work. Findings in this
study are promising and this can be applied to other 1-D data
sets such as ECG, EEG classification. The effect of segment
length, embedding dimension m and number of classes c of
the proposed GGD-MDE method can be evaluated.
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