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Abstract—Convolutional neural networks (CNNs) are widely
used in many areas. They feature convolutional layers that
focus on spatial local node connections rather than full node
connections. This makes networks much more efficient for spatial
information. The convolution is a mathematical operation on
two functions and can be calculated using the discrete Fourier
transform (DFT). Due to the close relation to the DFT, the
discrete cosine transforms (DCTs) can be used for the calculation.
In this paper, we focus on the convolution using DCTs for
improvement of the performance of CNNs. The periodicity and
symmetry inherent in the DCTs generate larger output feature
maps. The proposed method in simple CNNs is demonstrated and
the efficacy of the proposed method is testified using CIFAR-10
dataset.

Index Terms—convolutional neural network, discrete cosine
transform, convolution, dropout, fast training

I. INTRODUCTION

Convolutional neural networks (CNN) are widely used in
many applications, such as image recognition, image classifi-
cation, and medical image understanting [1] [2]. CNNs have
convolutional layers that calculate the convolution between
inputs and filters, where the weights of filters are trained to
extract effective features.

Various methods for improving network performance have
been proposed. The batch normalization forcibly adjusts the
distribution of activations for each layer to suppress overfitting
[3]. The dropout avoids the use of a certain percentage of
nodes per minibatch to reduce the dependence on specific
nodes [4]. The data augmentation (DA) enlarges the number
of samples by geometrical transformation, such as flipping,
rotation, and scaling [5]. In frameworks, the DA is provided by
calling a function in preprocessing for datasets, where manual
transformation is not needed.

The convolution is a mathematical operation on two func-
tions. As is well known, the discrete Fourier transform (DFT)
is able to calculate the convolution. For the purpose of fast
training of CNNs, the FFT, the fast algorithm of DFT, was
used for calculating the convolution [6]. Due to the close
relation to the DFT, the discrete cosine transforms (DCTs) can
calculate convolution under certain conditions. For increasing
the number of samples, DCTs were used for flipping DA [7].

In this paper, we proposed the convolution using DCTs
rather than spatial convolution in order to obtain extended
output feature maps that are almost four times larger than
the normal one. By using the extended feature maps together
with the dropout, filter weights are learned efficiently, which
improves network performance. We demonstrate the proposed
method on simple CNNs and show the efficacy using CIFAR-
10 dataset [8].

II. PRELIMINARIES

For simplicity, we use one-dimensional expression unless
otherwise confusion.

A. Linear convolution and circular convolution

Let x(n) and h(n) be a sequence of length M and a filter
of length L, respectively, where M > L.

The convolution of x(n) with h(n) is able to be calculated
by P -point forward and inverse DFT as

x(n)⊗ h(n) =
1

P

P−1∑
k=0

X(k)H(k)W−nk
P (1)

where ⊗ denotes the convolution operator, X(k) and H(k)
represent the DFT coefficients of x(n) and h(n), respectively,
and WP = exp(−j2π/P ). Note that x(n) and h(n) are zero-
padded to the end of them so that the length becomes P .

Since P is the output lenghth, if P = M + L − 1, (1)
results in the linear convolution. If P = M , it becomes the
circular convolution, where the values at more than M points
are added to the first part of the linear convolution. That is,
the period P of the DFT is important. Below, to represent the
length of sequences explicitly, the length is expressed as the
subscript. e.g., xN (n) indicates that the length of sequence
x(n) is N .

B. Circular convolution between symmetrically extended se-
quences

Both DFT and DCT have periodicity. In addition, DCT fea-
tures symmetry. For the relation between DFT and DCT type-2
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(DCT-2: the most popular type of DCTs), the symmetrically
extended sequence (SES) of xN (n) is defined as

x̂2N (n) = x2N (n) + x2N (−n− 1) (2)

where

x2N (n) =

{
xN (n), 0 ≤ n ≤ N − 1
0, N ≤ n ≤ 2N − 1

. (3)

The 2N -point DFT coefficients, X̂(k), of x̂2N (n) are related
to the N -point DCT-2 coefficients, XC(k), of xN (n) [9], for
k = 0, 1, . . . , N − 1 as

X̂(k) = (1/Ck)XC(k)W
−k/2
2N (4)

where

XC(k) = 2Ck

N−1∑
n=0

xN (n) cos

(
π(n+ 1/2)k

N

)
, (5)

Ck =

{
1/
√
2, k = 0 or N

1, otherwise
. (6)

From (1), the circular convolution of x̂2N (n) and ĥ2N (n)
is obtained by 2N -point inverse DFT as

x̂2N (n)⊗ ĥ2N (n) =
1

2N

2N−1∑
k=0

X̂(k)Ĥ(k)W−nk
2N . (7)

From (4), it is developed as

x̂2N (n)⊗ ĥ2N (n) =
1

N

N∑
k=0

C2
kXC(k)HC(k) cos

(
πnk

N

)
.

(8)

Thus, the first N points of the circular convolution of 2N -
point SESs are calculated using N -point DCTs.

III. CONVOLUTION USING DCTS FOR THE EXTENDED
FEATURE MAP

The circular convolution of two SESs contains four linear
convolutions. To isolate each linear convolution, zero-values
are padded to the head of the sequences in addition to the end
of the sequences.

Let z1 be the number of zero-padding of the head of the
sequence xM (n) and let z2 be the number of zero-padding of
the head of the filter hL(n):

xN (n) =

{
xM (n− z1), z1 ≤ n ≤ z1 +M − 1
0, otherwise , (9)

hN (n) =

{
hL(n− z2), z2 ≤ n ≤ z2 + L− 1
0, otherwise . (10)

The circular convolution between x̂2N (n) and ĥ2N (n),
which are the extension according to (2) of xN (n) and hN (n),
respectively, is expressed by the superposition of four linear
convolutions as

x̂2N (n)⊗ ĥ2N (n) = y
(1)
2N (n) + y

(2)
2N (n) + y

(3)
2N (n) + y

(4)
2N (n)

(11)

where

y
(1)
2N (n) =

{
xM (n)⊗ hL(n), R1

0, otherwise (12)

y
(2)
2N (n) =

{
xM (−n− 1)⊗ hL(n), R2

0, otherwise (13)

y
(3)
2N (n) =

{
xM (n)⊗ hL(−n− 1), R3

0, otherwise (14)

y
(4)
2N (n) =

{
xM (−n− 1)⊗ hL(−n− 1), R4

0, otherwise
(15)

and Ri = li ≤ n ≤ li + (L+M − 1)− 1, i = 1, 2, 3, 4.
From the condition that the respective ranges (Ri, i =

1, 2, 3, 4) do not overlap, when M is an even number, the
minimum numbers of z1, z2, and N are obtained as

z1 = z2 + L, (16)
z2 = (M − 2)/2 + 1, (17)
N = 2(M + L). (18)

Under the conditions in (16), (17), and (18), the order of
the outputs of the four linear convolutions is y

(1)
2N (n), y(3)2N (n),

y
(2)
2N (n), and y

(4)
2N (n) in the linear convolution of SESs, x̂2N (n)

and ĥ2N (n). In the circular convolution of the SESs, the
values at more than 2N points are wrapped around, the order
becomes y

(2)
2N (n), y

(1)
2N (n), y

(4)
2N (n), and y

(3)
2N (n). Since the

convolution using DCTs calculate the first N -point of the
circular convolution of the SESs, we can obtain y

(1)
2N (n) and

y
(2)
2N (n) by using DCTs. We use two-dimensional version of

whole results of the convolutions using DCTs as the extended
feature map.

IV. THE PROPOSED MODEL FOR CNNS

We propose the model that uses the convolution using
DCTs in CNNs to generate the extended feature map for
improvement of network performance.

A. The model

We replace the spatial convolution in the first layer of CNNs
by the convolution using DCTs. Fig. 1 shows the steps of the
first layer in the forward pass. The images of size M × M
in a dataset are zero-padded according to (9), (16), and (18),
and the N ×N -point DCT is applied to them according to (5)
in order to obtain DCT coefficients beforehand. The weights
of filters of size L×L are initially set with random numbers,
which are trainable. The filters are zero-padded according to
(10), (17), and (18), and the N × N -point DCT is applied
to them. The DCT coefficients of a zero-padded image are
multiplied by the DCT coefficients of a zero-padded filter
element by element. Finally, the inverse transform is applied
to the DCT product according to (8) and the bias is added to
them.

The extended output feature map consists of four linear
convolutions, one between the image and the filter, one be-
tween the horizontal flipped image and the filter, one between
the vertical flipped image and the filter, and one between the
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Fig. 1. Steps in the first layer. The numbers, (1, 1), (1, 2), (2, 1), and (2, 2) in the extended output feature map correspond to two-dimensional expression
of the superscript of linear convolutions in (12) and (13).
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Fig. 2. Model 1 for experiments. (a) proposed. (b) normal. The model consists of two convolutional layers in the features module, two fully connected layers
(Dense) followed by the softmax layer in the classifier module.

horizontal and vertical flipped image and the filter. That is, the
size of extended output feature maps is four times larger than
that of inputs. Since there is a correlation among four linear
convolutions, the extended feature map is not efficient as it
is. Therefore, using the extended feature map in conjunction
with the dropout method reduces the correlation and makes
efficient training, which are different from the DA.

B. Computational complexity

Table I summarizes the computational complexity of cir-
cular convolution using DCT between an image and a filter
that are padded with zero-values so that the size of them is
N × N . The number of multiplication (mul.) and addition
(add.) operation is based on the fast DCT algorithms [10],
[11].

Let B and F be the size of minibatches and number of
filters, respectively. The spatial convolution needs SF (M −
L + 1)2L2 multiplications, while the convolution using DCT
requires F (N2 log2 N + 2N) multiplications for the DCT
coefficients of filters, and BF (2(N2 log2 N + 2N) + N2)
multiplications for the DCT product and the inverse transform.

When the filter size is small, the use of DCTs is compu-
tationally expensive. However, when the filter size is large,

TABLE I
COMPUTATIONAL COMPLEXITY OF THE CONVOLUTION USING DCTS OF

SIZE N ×N .

ope. number of operation
forward mul. 2× (N2 log2 N + 2N)

transform add. 2× (3N2 log2 N − 2N2 + 2N)
DCT product mul. N2

inverse mul. N2 log2 N + 2N
transform add. 3N2 log2 N − 2N2 + 2N

the convolution using DCTs is less computational load than
spatial convolution.

V. EXPERIMENTAL RESULTS

The proposed method is evaluated using CIFAR10 dataset.

A. Experimental setup

We use the CIFAR-10 dataset which consists of 60,000 color
images of size 32× 32 with three channels in ten classes. In
this experiments, 50,000 images were used for training the
network, and 10,000 images were utilized for validation only.
We compared the Models 1 and 2 of the proposed method to
the normal models that use spatial convolution.
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TABLE II
TEST ACCURACY OF MODEL I FOR CLASSIFYING 10 CLASSES IN

CIFAR-10.

method acc.
spatial conv. 0.6236

spatial conv. with flipping DA 0.6937
proposed 0.7404

Model 1 consists of two convolutional layers and a 2 × 2
max-pooling layer in the features module and two fully
connected layers followed by the softmax layer in the classifier
module, where rectified linear unit (ReLU) activation function
was used after the convolutional layers and the fully-connected
layers. The convolutional layers have 32 filters of size 3× 3.
The dropout was applied with the ratio of 0.8 in the features
module. Figs. 2(a) and 2(b) show Model 1 of the proposed
method and the normal method, respectively. The difference
of them is the first layer.

In Model 2, the features module of Model 1 was repeated
three times with different number of filters, which is followed
by the classifier module of Model 1. The number of filters in
the first convolutional layer was 32, otherwise, the number of
filters was doubled input in the feature module. The dropout
was applied in each features module with the ratio 0.2, 0.3,
and 0.4.

In both models, stochastic gradient descent (SGD) was uti-
lized as the optimizer. The cross entropy error was employed
as the loss function The initial filter coefficients were set with
random numbers. The configurations had minibatches of size
100. Each configuration was trained for 50 epochs with the
learning rate 0.01.

B. Experimental results

Figs. 3 and 4 show the learning curves of Model 1 in
terms of loss and accuracy, respectively. The solid line shows
the proposed method, and the dashed line is the normal
method. The lines in black and magenta represent training
and validation, respectively. Table II summarizes the accuracy
of Model 1, where the proposed method achieved the best
accuracy of 0.74040, while the normal method was 0.6236.
Since we observed the overfitting in the model of normal
method from Fig. 3, we used flipping DA for the normal
method. When flipping DA was used in the preprocessing, the
accuracy of the normal method increased to 0.6937. In Model
2, the accuracy of the proposed method was 0.8749, while the
normal method and the normal method with flipping DA were
0.7672 and 0.7871, respectively. From the results, the efficacy
of the proposed method was testified.

VI. CONCLUSIONS

We proposed the convolution using DCTs in the first layer in
CNNs to generate the extended feature map for improvement
of network performance. Since there is a correlation among the
extended feature map, the feature map is used in conjunction
with the dropout method to reduce the dependence on specific

Fig. 3. Learning curve (loss) of Model 1

Fig. 4. Learning curve (accuracy) of Model 1

nodes. We have demonstrated effectiveness of the proposed
method in two models of CNNs using the CIFAR10 dataset.

Since the size of the extended feature map is fixed due to the
period of DCT, the proposed method can use different sizes
of filters in a layer, which enables multi-resolution analysis
that was not feasible in a simple layer before. In the future
work, we will evaluate the method in some applications and
measure the learning time with GPU implementations.
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