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Abstract—In this paper, we address the classification and
dimensionality reduction via ensembles of Gaussian Process
Latent Variable Models (GPLVMs). The underlying idea is to
have a diverse representation of latent spaces represented by
an ensemble of GPLVMs. Each GPLVM of the ensemble has
its own projections of the high dimensional observed data on a
low dimensional latent space. These models are weighted using
importance sampling. Since in practical settings, neither the
kernel of the GPLVM nor the dimension of the latent space
is known, it is logical to engage an ensemble of GPLVMs
based on different kernels and for each of them estimate the
dimension of the lower dimensional space. We demonstrate the
advantage of working with ensembles for classification and show
the performance of dimensionality reduction of our method with
numerical simulations.

I. INTRODUCTION

Gaussian process latent variable models (GPLVMs) are
machine learning (ML) methods that combine latent variable
models and GPs [1]. In these models, the input variables are
not observed and are of a much lower dimension than the
output variables. Thus, one important characteristic of these
models is that they provide a compressed representation of
high-dimensional data. Further, they can work with different
data types as well as with missing data and can take advantage
of the availability of prior information [2]. They have often
been used in tasks like classification of high dimensional
vectors, clustering, and regression and have found a wide range
of applications, from neuroscience [3] and bioinformatics [4]
to robotics [5] and finance [6].

The framework of variational inference for integration of the
latent variables was adopted in [7], where the concept of an
expanded probability model with auxiliary inducing variables
was exploited. The approach requires the joint maximization
of Jensen’s lower bound over the variational parameters that
include the parameters of the approximated posterior of the
latent variables and the model hyperparameters. In [8], the
method from [7] was expanded by using auxiliary inducing
variables of the GP prior, and where the latent variables are
marginalized with respect to the variational posterior.

Monte Carlo-based methods have also been explored for
inference of GPs and GPLVMs. In [9], the authors apply a
Markov chain Monte Carlo method [10] as opposed to the
Gibbs sampling approach presented in [11]. They show that
their scheme is more efficient for regression and classification
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than Gibbs sampling because the latter suffers considerably
from high correlations of the high-dimensional variables. In
their method, they propose to use control variables for gener-
ating better samples, and their meaning is analogous to that
of the inducing variables of sparse GP models [12]. In [13],
a hybrid Monte Carlo sampling method was proposed that
simultaneously addresses the approximation of the posterior
of a GP, the estimation of the parameters of the covariance
function, and scalability. With this approach, the drawn sam-
ples of inducing points and covariance parameters are used
for computing integrals. In [14], the Metropolis-within Gibbs
construction was adopted as a sampling tool across the levels
of a hierarchy of deep GPs. Another MCMC-based approach
for learning deep GPLVMs was proposed in [15], where the
variational approximation is used to initialize the Markov
chains and thereby speed up the convergence. It is also shown
that the posterior approximation with the proposed method is
better than that of the underlying variational approximation.
More recently, stochastic gradient Hamiltonian Monte Carlo
was employed for inference of deep GPs [16].

In this paper, we aim at working with an ensemble of
GPLVMs and exploiting their diversity to get improved per-
formance in classification and dimension estimation of the
latent space. We can construct the GPLVMs in different
ways, e.g., by sampling from the variational posteriors and
computing the weights of the samples using the principle
of importance sampling (or adaptive importance sampling)
or by using variational inference many times with different
initial conditions, which leads to different projections on
the lower-dimensional space and again applying importance
sampling. By constructing different GPLVMs with distinct
types of kernels and operating in latent spaces of different
dimensions, we improve the overall capacity for exploring
the lower dimensional spaces and eventually enhancing the
performance of the ensemble of GPLVMs.

Our contributions in this paper include the following: (1)
introduction of the concept of an ensemble of GPLVMs
for tasks like classification and dimensionality reduction, (2)
use of importance sampling for evaluating the members of
the ensemble and for proposing new members with better
capacity for performing the intended task, and (3) proposal
of methods for leveraging the ensembles of GPLVMs for
improved performance.

The rest of the paper is organized as follows. In Section
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II, we briefly review the GPLVMs. Section III introduces the
concept of an ensemble of GPLVMs and elaborates on how
we construct the member GPLVMs. We propose a method for
classification based on an ensemble of GPLVMs in Section
IV and a method for estimating the dimension of the latent
space and types of kernels in Section V. In Section VI we
provide numerical results that demonstrate the performance of
the proposed methodology, and in Section VII we conclude
our paper with our final remarks.

II. THE INFERENCE PROBLEM

Consider a set of observations Y ∈ RN×D that are assumed
to be generated according to the following equation:

p(Y|X) =

D∏
d=1

p (yd|X) , (1)

where yd ∈ RN×1, X ∈ RN×Q, with Q << D, and where the
probability density function of yd conditioned on the variables
X is given by

p (yd|X) = N
(
yd|0,KNN + β−1IN

)
. (2)

Here the notation N
(
yd | 0,KNN + β−1IN

)
means that the

vector yd is distributed according to the multivariate Gaussian
distribution with zero mean and a covariance matrix KNN +
β−1IN , where KNN ∈ RN×N is constructed by using specific
kernel(s) and X. For example, in the case of the radial-basis
function kernel, the elements of KNN are

k (x,x′) = σ2
f exp

(
−1

2

Q∑
q=1

αq

(
xq − x′

q

)2)
(3)

where σ2
f and α1:Q are hyperparameters. The matrix IN in

(2) is the identity matrix of size N × N , and β ∈ R+ is a
precision parameter. Further, it is assumed that the probability
density function (pdf) of X is

p(X) =

N∏
n=1

N (xn|0, IQ) , (4)

where xn is the nth row of X. In this model, the only variables
that are observed are the elements of the matrix Y. Thus, if
we use KNN with entries defined by (3), X, σ2

f , α1:Q, β are
unknown. The main objective is to find the unknown matrix
X. The true posterior p(X|Y) is difficult to obtain, and thus,
we approximate it by

q(X|Y) =

N∏
n=1

N (xn|µn,Sn) , (5)

where the parameters {µn,Sn}Nn=1 are obtained by the vari-
ational inference principle [7]. We proceed by obtaining a
closed form expression of the lower bound on p(Y|X), fol-
lowed by jointly maximizing it over the variational parameters
{µn,Sn}Nn=1 and the hyperparameters. We point out that the
variational posterior distribution q(X|Y) is only approximate
because it is immediately clear that the true posterior p(X|Y)

cannot be Gaussian. We also observe that the posterior in (5)
is conditioned on a conjectured dimension Q of xn. In [7],
it is first assumed that the dimension of xn is larger than the
true dimension, and one selects the dimension Q by using the
principle of automatic relevance determination (ARD), where
only dimensions of large inverse length-scales (small values
of αq in (3)) are kept.

III. GENERATION OF ENSEMBLES OF GPLVMS

As a prior of X we start with the following pdf:

p(X|σ2) =

N∏
n=1

N (xn|0, σ2I)

=
1

(2πσ2)
NQ
2

e−
∑N

n=1 x⊤
n xn

2σ2 , (6)

where σ2 is a parameter that in principle has to be set and that
will play a significant role in the estimation of Q. To avoid
the problem of selecting specific values of σ2, we assume that
σ2 comes from its own prior p(σ2) ∝ 1

σ2 . When we use it to
marginalize σ2 from (6), the prior for X becomes

p(X) ∝
∫ ∞

0

p(X|σ2)p(σ2)dσ2

=
1

2

(
1

2π

)NQ
2

Γ

(
NQ

4

)(∑N
n=1 x

⊤
nxn

2

)−NQ
2

, (7)

where for the integration of σ2 we used the integral [17]∫ ∞

0

(
σ2
)−(k+1)

e−
a
σ2 dσ2 =

1

2
a−

k
2 Γ

(
k

2

)
. (8)

The Gaussian prior from (6) is averaged over all σ2, and it
encourages/discourages models based on the proposed X and
dimension Q. Typically, higher values of Q are discouraged
(penalized more).

Next, suppose we obtain a variational posterior q(X|Y) as
in (5). We can use this posterior to draw samples of the latent
variables, that is,

X(m)∼ q(X|Y), m = 1, . . . ,M, (9)

where X(m) ∈ RN×Q. We then compute the weights of the
drawn samples according to

w̃(m) =
p
(
Y|X(m)

)
p(X(m))

q
(
X(m)|Y

) , m = 1, . . . ,M, (10)

where p(X) is given by (7), and where we exploit the principle
of importance sampling [10]. The samples are then normalized
by w(m) = w̃(m)/

∑M
k=1 w̃

(k), and we have an approximation
of the posterior of X given by

pM (X|Y) =

M∑
m=1

w(m)δ
(
X−X(m)

)
, (11)

where δ(·) stands for the Dirac delta function. We note that
we can use the set {X(m), w(m)} to construct an improved
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proposal for X in the spirit of adaptive importance sampling
[18].

An approach for improving the set of samples X(m) is to
use first a proposal that is a mixture of variational posteriors
and given by

q1(X) =
1

L

L∑
l=1

q1,l(X|Y), (12)

where the mixands q1,l(X|Y) are the variational posteriors
obtained by different initialization of the posterior. In the next
step, we cluster the vectors x

(m)
1,n into K groups, and from the

obtained groups we construct Gaussians for drawing another
generation of vectors xn. They are generated from

q2(X) =

K∑
k=1

w2,kq2,k(X|Y), (13)

where w2,k is the weight given to the kth mixand q2,k(X|Y)

and which is obtained by adding the weights of x
(m)
1,n that

belong to the kth cluster. Once the parameters of the Gaussians
are constructed from the cluster members, we draw the next
generation of samples by

x
(m)
2,n ∼ N (µ2,n,S2,n), m = 1, 2, · · · ,M. (14)

It is well known that the choice of the kernel of the GPLVM
is crucial for the performance of the GPLVM. It is also known
that there are many basic types of kernels to choose from
and innumerable possibilities to combine them. In this case,
we can view the step of selecting kernels as another form
of sampling from the space of kernels. Once a kernel is
picked, we proceed with determining the best dimension of
the latent space for its operation. When the dimensions of the
GPLVMs are determined, the GPLVMs are assigned weights.
These weights suggest which types of kernels are better for
the analyzed data.

IV. CLASSIFICATION USING ENSEMBLE GPLVMS

The problem of classification amounts to assigning an
observed vector y to one of the predetermined classes ck,
k = 1, 2, · · · ,K. A Bayesian approach to this problem is
based on computing the posterior probability P (ck|y), ∀k, and
assigning y to ck that has the maximum posterior probability.

Suppose that we have labeled data Y and have constructed
many copies of the latent variables X(m), m = 1, 2, · · · ,M.
Then we observe a new vector y∗ and have to classify it into
one of the K classes ck. The first step is, to draw samples
x
(j)
∗ according to

x
(j,m)
∗ ∼ q(x∗|Y,X(m),y∗), (15)

where j = 1, 2, · · · , J and m = 1, 2, · · · ,M .
We write this posterior as

pJ(x∗|Y,X(m),y∗) =

J∑
j=1

λ(j,m)δ(x∗ − x(j,m)), (16)

where the λ(j,m)s are weights obtained analogously as the
weights in (10).

In the next step, for each m, the samples x
(j,m)
∗ are classi-

fied in one of the classes ck by using a favorite ML method.
For simplicity, let us first assume that this method provides a
hard decision that x(j,m) belongs to one of the classes. Then,
from all the classifications x(j,m)

∗ , j = 1, 2 · · · , J , we estimate
the probability P (ck|y∗,Y,X) by

P̂ (m)(ck|y∗,Y,X(m)) =

J∑
j=1

λ(j,m)Ic=ck , (17)

where Ic=ck is the indicator function.

V. ESTIMATING THE DIMENSION OF THE LATENT SPACE

In practice, we have no knowledge of the actual dimension
of the latent states Q, and we do not know the type of kernel
that is good for modeling the data. Let k denote the index of
a kernel, e.g., an RBF kernel or an Exponential kernel. This
index comes from an index set K, where each index in the set
corresponds to a different kernel type. In this subsection, we
address the problem of finding the posterior P (Q, k|Y), where
Q = 1, 2, ...D and k ∈ K simultaneously. For the posterior of
k and Q we write

P (Q, k|Y) ∝ p(Y|Q, k)P (Q)P (k), (18)

where we assume that Q and k are independent, and

p(Y|Q, k) =

∫
p(Y|X, Q, k)p(X|Q, k)dX. (19)

We solve this integral by Monte Carlo integration where we
sample X as before from q(X|Y, Q, k), i.e.,

X(m) ∼ q(X|Y, Q, k). (20)

We then have

p(Y|Q, k) ≈
M∑

m=1

p(Y|X(m), Q, k)p(X(m)|Q, k)

q(X(m)|Y, Q, k)
. (21)

We note that in the above approach the penalty from overes-
timating the dimension comes from the prior P (X).

In computing the factors in (21) we need the hyperparame-
ters of the GP and we use the ones obtained while computing
q(X(m)|Y, Q, k). Another approach would be to have them
drawn from their priors and compute the required integral
using the Monte Carlo method in the same way as we compute
(19) by (21). If the prior p(Q) and p(k) are both uniform, we
see that p(Q, k|Y) is proportional to p(Y|Q, k) only. We start
the computations with Q = 1, then Q = 2, and so on. After
some Q, these probabilities will start to drop significantly in
value, which will be a sign to stop the process of exploring
higher dimensions of X.

VI. NUMERICAL RESULTS

In this section, we present the results of classification and
dimension estimation.
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(a) D = 10, N = 100, RBF kernel with
l = 0.2 and β = 0.01.
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(b) Three different members, q(m)(x) of the ensemble GPLVM.

Fig. 1. One-dimensional latent space.
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Fig. 2. Two-dimensional latent space, N = 100, D = 10, M = 6, RBF kernel with lengthscales l = 0.1 and β = 0.01

A. Example with classification

In order to depict how different initializations of the varia-
tional inference result in different projections of GPLVMs, we
created the latent data x, which came from a one-dimensional
space. Then we generated the observed data Y = {yd(X)}Dd=1

by using a multivariate Gaussian distribution with a covariance
matrix constructed using the generated latent vector x and
an RBF kernel. Figure 1(a) shows the one-dimensional latent
space and realizations of the generated observations. Each
column of Y, yd, was sampled from the multivariate Gaussian
distribution with zero mean and covariance matrix based on
x. In the experiment, the latent data x were 100 equally
distanced points with xn ≤ 0.5 representing class one and
xn > 0.5, class two. Fig. 1(b) demonstrates three posterior
means, each obtained by optimizing the log-likelihood of the
10-dimensional data with different initializations.

For the evaluation of the classification performance, we
generated latent variables in a two-dimensional space. They
followed the spiral shape as shown in Fig. 2 (leftmost plot).
These latent variables were converted to 10-dimensional ob-
servations. The different colors of the dots represent different
classes. We carried out the classification of the observed data
by M = 100 GPLVMs with random initialization and kernel
selection and fused the obtained results using a majority vote.
The performances in the presence of low and high noises are
summarized in Table 1 with different noise levels. Figure 2
shows six of these projections and their decision boundary
obtained by SVM.

B. Example with dimension decision

In this experiment, we generated the training and testing
set for latent states and observations with σ2

y = 0.1, the true
dimension of the latent states was Q0 = 3, the dimension of

TABLE I
CLASSIFICATION ACCURACY

σ2 = 0.01 σ2 = 0.1 σ2 = 0.2
GPLVM 0.952 0.734 0.625

EnGPLVM 0.981 0.812 0.773

observations was D = 5, and KNN,d was an RBF kernel-
based covariance matrix with different hyper-parameters θθθd
for each d. The training and testing sets had N = 200
samples. Our candidate latent dimensions were from the set
Q = {1, 2, 3, 4}, and the candidate types of kernels were
from the set K ={ RBF, Exponentiated Quadratic, Matérn32,
Matérn52, Exponential}. The ensemble of GPLVMs had M =
10 members.

Figure 3 shows the posterior of log p(Q, k|Y) under each
candidate pair (Q, k). Note that the pair (Q, k) of the latent
dimension and kernel type achieved the largest posterior when
Q = 3 and the applied kernel was the RBF. Thus, the
method found the correct kernel of the generative model and
the dimension of the latent space. In Fig. 4 we plotted the
cumulative log-likelihood under the RBF kernel when the data
kept arriving sequentially. The cumulative log-likelihood was
defined by

CLN (Q, k) =

N∑
n=1

log p(yn|Q, k). (22)

From the figure, the cumulative log-likelihood under Q = 3
gradually dominated the remaining log-likelihoods, which
demonstrates that our method can also be applied sequentially.

In another experiment, we compared our approach to es-
timating the dimension of the latent space with the ARD
method. The mechanism of the ARD is to remove the specific
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dimensions whose length scales l are larger than a threshold
γ. We generated data with the exponential kernel (k = 5),
and the true latent dimension was Q0 = 2. We found that the
maximum of the posterior by our approach was achieved for
Q = Q0, whereas the ARD method obtained for the length
scales l the following values:

• Q = 1: l = [3.0];
• Q = 2: l = [5.5, 5.1];
• Q = 3: l = [11.0, 12.0, 12.1];
• Q = 4: l = [10.4, 11.9, 11.5, 13.0].

From the obtained results, it is not clear how the ARD would
pick the dimensions. From the obtained values, it appears
that under all Q, there is not much evidence to remove any
of the dimensions. Further, the ARD approach is somewhat
subjective and can be inaccurate, as shown in this example. By
contrast, the proposed approach does not require the setting of
subjective thresholds and is based on fundamental principles.
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Fig. 3. Log posterior log p(Q, k|Y) under different Q and k. The correct
kernel is RBF and the correct dimension is Q0 = 3.
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Fig. 4. Cumulative log likelihood for each Q under the RBF kernel.

VII. CONCLUSION

In this paper, we proposed a latent variable model based on
an ensemble of GPLVMs. The ensemble can be constructed in
many ways, and a few have been outlined. All the GPLVMs
have the same type of kernel in one construction, but they are
initialized in different ways. This, in turn, leads to various
proposal functions that are used for generating the hidden

variables. Another construction is based on distinct kernels,
where each GPLVM has a kernel defined by a unique func-
tional form different from the kernel functional forms of the
other GPLVMs in the ensemble. In that case, we are sampling
from a set of functional kernel forms. Obviously, we can
have a mix of the two approaches. Further, we allow for
the improvement of the GPLVMs by using the concept of
importance sampling. In the paper, we also proposed methods
for the classification and estimation of the dimension of the
latent space. With numerical experiments, we demonstrated
the performance of the proposed methodology and compared
it with the performance of single GPLVMs. The results suggest
that much can be gained by working with ensembles of
GPLVMs.
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