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Abstract—Sequence matching problems have been central to
the field of data analysis for decades. Such problems arise in
widely diverse areas including computer vision, speech process-
ing, bioinformatics, and natural language processing. However,
solving such problems efficiently is difficult because one must
consider temporal consistency, neighborhood structure similarity,
robustness to noise and outliers, and flexibility on start-end
matching points. This paper presents a proposal of a shape-
aware Wasserstein distance between sequences building upon
optimal transport (OT) framework. The proposed distance con-
siders similarity measures of the elements, their neighborhood
structures, and temporal positions. We incorporate these sim-
ilarity measures into three ground cost matrixes of the OT
formulation. The noteworthy contribution is that we formulate
these measures as independent OT distances with a single shared
optimal transport matrix, and adjust those weights automatically
according to their effects on the total OT distance. Numerical
evaluations suggest that the sequence matching method using
our proposed Wasserstein distance robustly outperforms state-
of-the-art methods across different real-world datasets.

Index Terms—optimal transport, sequence matching, dynamic
time warping

I. INTRODUCTION

Sequence data naturally appear in a wide variety of data
domains including video, audio, sensor data, financial data,
and event sequence data, where the order of elements included
in data has important meaning [1]. Therefore, measuring
distances between sequence data plays a crucially important
role in many applications such as video classification, audio
analysis, signal processing, and item recommendation. Never-
theless, the judgment of similarity of two sequence data must
include consideration of many aspects including similarities of
the elements, their orders, and the relations between adjacent
elements. Therefore, efficient distance measurement between
sequence data has attracted a surge of research interest. One
approach to measure distances between sequences is sequence
matching. Sequence matching finds correspondence among all
the elements of two sequences, and defines the distance be-
tween the entire two sequences according to the total distance
of the corresponding elements. At the matching process, the
sequence data features must be considered in a comprehensive
manner. Particularly, even if the same data are included in
the two matching sequences, they are not necessarily matched

when they are temporally distant or when their neighborhood
structures are completely different.

One representative method of such sequence matching
methods is Dynamic Time Warping (DTW) [2], which uses
dynamic programming to find the optimal matching which
minimizes the total distance between matched elements under
some constraints. DTW can align sequences for which the
lengths or frequencies are different [3]–[5]. In fact, DTW
has been extended considerably in many ways to achieve, for
example, higher robustness of noises and outliers, and higher
flexibility to signal characteristics [3]–[7]. In another recent
avenue of matching methods, several works leverage the opti-
mal transport (OT) framework [8]. One salient benefit of such
OT-based matching methods is the capability of accommodat-
ing local inversion of the orders of elements and the differences
of starting point of periodic sequences. However, existing OT-
based matching methods do not consider the neighborhood
structures of each element. Therefore, matchings which are
not intuitive, such as matching of elements on the rise and
on the fall, often happen. More importantly, they provide
no framework to accommodate multiple features of interests
within the OT framework in a unified manner.

To overcome these issues, we propose a novel Wasserstein
distance between sequence data that explicitly considers the
similarity of relations between elements and their adjacent
elements. More concretely, we define costs for three fea-
tures, which are the similarity of elements, the similarity of
neighborhood structure of each element, and the similarity
of temporal positions. Then, we minimize the total transport
loss. It is worth mentioning that we give weights for each
cost and automatically calculate the optimal values for each
pair of sequences by applying a self-weighting process. We
designate our proposed distance as Auto-weighted Sequential
Wasserstein Distance, called AWSWD.

In this paper, scalars, vectors, and matrices are repre-
sented by lower-case letters (a, b, . . .), bold lower-case letters
(a, b, . . .), and bold-typeface capitals (A,B, . . .). The i-th
elements of a are represented as ai. The (i, j) position of
A is represented as aij or A(i, j). 1d is used for the d-
dimensional vector of ones. ⟨A,B⟩ =

∑
i,j aijbij is the

Frobenius dot product of matrices A and B. When vector
a lies in the probability simplex with d bins ∆d, ∆d := {a ∈
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Rd | ai ≥ 0, ∀i = 1, · · · d,
∑n

i=1 ai = 1}. Operator ./
represents the element-wise division of vectors or matrices.
Also, diag(a) represents a diagonal matrix of which diagonal
and off-diagonal elements are a and zeros, respectively.

II. RELATED WORK

A. Sequence Matching Methods

The most widely used way for solving sequence matching
is DTW [2]. Many efforts have been undertaken to enhance
the power of DTW. Earlier studies [9]–[11] have addressed
reduction of computational costs. The Sakoe-Chiba band [2]
and Itakura Parallelogram [12] restrict the warping area to pre-
vent non-intuitive matching patterns called singularity, where
one element of one sequence matches multiple elements of
the other sequence. The authors of [6] also aim at reducing
the singularity by assigning extra cost on temporally distant
elements. Derivative DTW [3] exploits derivatives of elements;
shapeDTW [4] and LSDTW [5] use feature vectors that
capture the shape of sequence around each element instead
of raw data. By conducting DTW with derivatives or feature
vectors, they consider the relations between adjacent elements.
As for OT-based approaches, the Order-Preserving Wasserstein
distance (OPW) regards sequences and those elements as a
probability distribution, and calculates the matching as the
transport matrix of an OT problem [8]. To handle the order-
structure of sequence, OPW considers two additional regu-
larizers that are transformed into the entropic regularization.
Therefore, this problem can be solved efficiently using the
Sinkhorn algorithm [13]. In another line of methods, instead of
calculating the element-wise matching, the authors of [14] gen-
erate groups of elements which represents the same events, and
conducts group-wise matching. The group-generating process
absorbs the difference of speed in each sequence. Therefore,
this method can also be regarded as considering relations
between adjacent elements.

B. Optimal Transport

Kantorovich relaxation formulation of the OT problem [15],
[16] is explained briefly in this section. Let α and β respec-
tively represent the probability or positive weight vectors as
α = (α1, α2, . . . , αm)T ∈ Rm

+ and β = (β1, β2, . . . , βn)
T ∈

Rn
+. Given two empirical distributions, i.e., discrete measures,

ν =
∑m

i=1 αiδxi
, µ =

∑n
j=1 βjδyj

and the ground cost matrix
C ∈ Rm×n between their supports, the problem minimizes the
total transportation cost as

min
T∈U(α,β)

⟨T,C⟩, (1)

where T ∈ Rm×n is called the transport matrix. U(α,β) :=
{T ∈ Rm×n

+ |T1n=α,TT1m=β} is the constraint for mass
conservation in transportation. The obtained optimal transport
matrix T∗ brings powerful distances as Wp(ν,µ) = ⟨T∗,C⟩

1
p ,

which is called the p-th order OT distance or Wasserstein
distance [16]. This distance is used in many machine learning
applications such as domain adaptation [17], clustering [18],
barycenter problem [19], discriminant learning [20], color

transfer [21], style transfer [22], and graph classification prob-
lem [23], [24]. The Sinkhorn algorithm solves the OT problem
with an entropy regularizer h(T) = −

∑
i,j ti,j log ti,j [13],

[25], [26]. The entropy regularized OT problem and the
Sinkhorn algorithm have some advantages such as having a
unique optimal solution, faster computation, and differentia-
bility of the objective function.

III. PROPOSED AUTO-WEIGHTED SEQUENTIAL
WASSERSTEIN DISTANCE: AWSWD

This section presents a proposal of a shape-aware Wasser-
stein distance between sequence data. The proposed distance
is calculated with consideration of three features of sequence
data, which are the similarity of elements, the similarity of
neighborhood structure of each element, and the similarity of
temporal positions. We incorporate these similarity measures
into the three ground cost matrixes of the OT formulation. It is
noteworthy that we formulate these measures as independent
OT distances with one shared OT matrix, and adjust their
weights automatically according to their distances.

A. OT-based Problem Formulation

Given two d-dimensional sequence data X =
(x1,x2, · · · ,xm) ∈ Rd×m, Y = (y1,y2, · · · ,yn) ∈ Rd×n

with length m and n, we define three ground cost matrices
Di ∈ Rm×n (i = 1, 2, 3) of size m× n.

We first denote the value similarity of elements as D1,
which is the Euclidian distance matrix between X and Y as

D1(i, j) = ∥xi − yj∥22. (2)

With respect to the similarity measures of the neighbor-
hood structure of each element, denoted as D2, we address
the derivative of each element as representing the relations
between adjacent elements. We then define x′ as

x′
i =

1

2

(
(xi − xi−1) +

(
xi+1 − xi−1

2

))
.

The first term is the differential of xi and its previous
element xi−1, and the second term is the differential of the
two elements next to xi. The derivative value of xi is defined
as the average value of the two differentials. This assumption
is the same as the one proposed in [3], [5]. Using this value,
D2(i, j) is defined as the sum of the distance of derivatives
of adjacent l elements centered by xi and yj , which is given
as

D2(i, j) =

l∑
k=−l

∥x′
i+k − y′

j+k∥22. (3)

In the experiment, we set ∥x′
i+k − y′

j+k∥22 = 0 if the indices
i+ k or j + k is outside of the length of the sequences

Finally, we define the cost matrix D3(i, j), which stands
for the similarity of sequential positions of xi and yj , as the
logistic function of the order distance |i− j|, i.e.,

D3(i, j) =
1

1 + exp(−k(|i− j| − t0))
, (4)
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where k and t0 respectively denote the sigmoid curve steep-
ness and midpoint.

Now, putting all of the distances of Di (i = 1, 2, 3) and
assigning weights w = (w1, w2, w3)

T ∈ R3 for each OT
distance, we define the total Wasserstein distance between X
and Y as

dist(X,Y) =

3∑
i=1

wi⟨T,Di⟩.

We then obtain the following OT problem with entropic
regularization of the optimal matching as

T∗ = arg min
T∈U(α,β)

{
f(T) :=

3∑
i=1

wi⟨T,Di⟩ −
1

λ
· h(T)

}
,

(5)
where λ > 0 is the regularization parameter. Finally, we obtain∑3

i=1 wi⟨T∗,Di⟩ as our proposed AWSWD.

B. Optimization Algorithm with Auto Calculation of Weights

The OT problem in (1) is a linear programming problem,
i.e., a convex problem. It is true, however, that the problem
in (5) is non-convex. Therefore, we consider a bi-convex
alternative approach. For this purpose, we particularly address
calculation of the weight vector w by borrowing the technique
introduced in multi-view clustering [27]. More specifically, we
introduce the auxiliary function below.

min
T∈U(α,β)

3∑
i=1

√
⟨T,Di⟩ − h(T). (6)

Setting the derivative of the this function of (6) with respect
to T to zero, we obtain

ŵi
∂⟨T,Di⟩

∂T
+

∂Θ(λ1, λ2,T)

∂T
= 0, (7)

where Θ(λ1, λ2,T) = h(T)−λ1(T1n−α)−λ2(T
T1m−β)

represents the terms derived from the entropy term and the
constraints. λ1 and λ2 are the Lagrangian multipliers of the
constraints. Consequently, this finally produces

ŵi =
1

2
√
⟨T,Di⟩

. (8)

It is noteworthy that (7) is difficult to solve because ŵi is
dependent on T. However, assuming that ŵi is fixed, (7) is
equal to the derivative of the function of (5). Subsequently, we
can take the alternative optimization strategy of T by (5), and
wi by (8). This converges to a locally minimum solution T
of (6). We summarize the optimization algorithm to calculate
our proposed AWSWD in Algorithm 1.

Here, considering the relationships between wi and Di, the
weight wi takes a large value when the loss ⟨T,Di⟩ is small.
Thus, the cost matrix Di with a small loss can be regarded as
important information. The weight calculation by (8) assigned
a greater weight for the corresponding i. Therefore this weight
calculation can be regarded as a process of learning optimal
weights. These behaviors are confirmed in Section IV-A.

C. Convergence Analysis

This subsection presents a simple convergence analysis of
Algorithm 1, which is inspired by [27]. For this purpose, we
first give the following lemma.

Lemma III.1 (Lemma 1 in [27]). For any positive number a
and b, the following inequality holds: a− a2

2b ≤ b− b2

2b .

Denoting T and wi after the k-th iteration respectively as
Tk and wk

i , we now give a convergence analysis.

Theorem III.2 (Convergence of Algorithm 1). Let {Tk}k≥0

be the transport matrix generated by Algorithm 1 for solving
the problem (5). Assume that f(T) is bounded below over
U(α,β). Then, the functional sequence {f(Tk)}k≥0 is non-
increasing. Therefore, it converges.

Proof. With the update of Tk+1 from Tk in (5) under the
fixed wk

i = 1/2
√
⟨Tk,Di⟩, the following inequality holds:

3∑
i=1

⟨Tk+1,Di⟩
2
√
⟨Tk,Di⟩

− λh(Tk+1)

≤
3∑

i=1

wi
⟨Tk,Di⟩

2
√

⟨Tk,Di⟩
− λh(Tk). (9)

Then, the following is derived from Lemma III.1:
3∑

i=1

√
⟨Tk+1,Di⟩ −

3∑
i=1

⟨Tk+1,Di⟩
2
√

⟨Tk,Di⟩

≤
3∑

i=1

√
⟨Tk,Di⟩ −

3∑
i=1

⟨Tk,Di⟩
2
√
⟨Tk,Di⟩

. (10)

Adding (9) and (10) yields
3∑

i=1

√
⟨Tk+1,Di⟩ − h(Tk+1) ≤

3∑
i=1

√
⟨Tk,Di⟩ − h(Tk).

Therefore, the updated T decreases the value of (6), and
Algorithm 1 can obtain a local optimal solution.

IV. NUMERICAL EVALUATIONS

This section presents numerical evaluations of the pro-
posed AWSWD using several real-world datasets. The datasets
are Swedish-Leaf, FaceAll, ItalyPowerDemand, and SonyAI-
BORobotSurface1 from UCR time series datasets1, which are
one-dimensional data. We also use multi-dimensional datasets,
such as Spoken Arabic Digit (SAD) dataset2, High Quality
Australian Sign Language Signs (HAS) dataset2 [28], and
MSR Sports Action3D dataset [29]. The experimental setup for
MSR Action3D dataset is based on [30]. They are summarized
in TABLE I. As for HAS and SAD, the length of sequence
is not fixed, so the average length is shown in TABLE I. We
compare the sequence matching method using our proposed
distance AWSWD with state-of-the-art sequence matching
methods which include DTW [2], Soft-DTW [7], DDTW [3],
shapeDTW [4], and OPW [8].

1https://www.cs.ucr.edu/∼eamonn/time series data 2018/
2https://archive.ics.uci.edu/ml/datasets.php
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Algorithm 1 AWSWD Algorithm
Require: Data X, Y, parameter λ, subsequence length l
Ensure: Matching matrix T, and distance between X, Y

Calculate ground cost matrices Di by (2), (3), (4), and
initialize weights wi =

1
3 (i = 1, 2, 3)

while wi has not converged do
Calculate D̃ = w1D1 + w2D2 + w3D3

Calculate K = e−D̃/λ

Initialize k1 = 1m/m
while k1 has not converged do

Update k2 = β./KTk1

Update k1 = α./Kk2

end while
Calculate transport matrix T = diag(k1)Kdiag(k2)
Update wi with (8) for i = 1, 2, 3

end while
Calculate distance

∑3
i=1 wi⟨T∗,Di⟩

TABLE I
SPECIFICATION OF DATASETS.

dataset dim length # class # train # test
SwedishLeaf 1 128 15 500 625
FaceAll 1 131 14 560 1690
ItalyPowerDemand 1 24 2 67 1029
SonyAIBORobotSurface1 1 70 2 20 601
HAS 22 57.3 95 1235 1330
SAD 13 39.8 10 6600 2200
MSRAction3D 192 24 20 284 273

The parameters for D3 are set to k = 0.1 and t0 to one-third
of the input sequence length. Our preliminary experiments
revealed that smaller values of k, i.e., the linearly distributed
D3 yield better classification results than larger values of k
do, i.e., binary distribution with the boundary t0.

A. Behaviors of Auto Calculation of Weights

We first evaluate the behaviors and impacts of the weight
value w by using synthetic dataset. Concretely, we randomly
chose one datum from SwedishLeaf dataset as the original
sequence. We denote it as Type A. Then, we prepare two
artificially modified sequences. We add a small positive offset
along the y-axis direction, and denote it as Type B. The second
sequence, denoted Type C, contains a small positive offset
along the x-axis direction. These sequences are shown in Fig.
1. Now, for these three sequences, we calculate the proposed
AWSWD, and see how the obtained weight value w changes
for each type. The obtained weight value w is summarized
in TABLE II, where the ratio of wi to the total ∥w∥1 is also
summarized. Note that the parenthesized values in TABLE II
indicate increase-decrease rates compared to the values in Type
A. From this table, it can be seen that, when the y-axis offset
is added as in Type B, the ratio of w1 gets smaller than that of
Type A. This behavior of w1 can be regarded as the effect to
reduce the additional transportation loss of D1 that is caused
by adding the y-axis offset. When the x-axis offset is added,
on the other hand, the ratio of w3 gets smaller. Similarly to

Type B, because the x-axis offset increases the transportation
loss with D3, this can be considered to alleviate the increasing
transportation loss of D3. Consequently, we conclude that the
proposed weight calculation of w can adaptively reduce the
deviations between two sequences by lowering those weights.

Fig. 1. Sample sequence and modified sequences

TABLE II
CALCULATED WEIGHT wi (UPPER ROW) AND ITS RATIO TO ∥w∥1 (LOWER

ROW). PARENTHESIZED VALUES AT LOWER ROWS INDICATE
INCREASE-DECREASE RATES COMPARED TO THE VALUES IN TYPE A.
sequence w1(similarity) w2 (derivative) w3 (position)

A 10.57 5.69 3.96
(original) 52.3% 28.1% 19.6%

B 3.82 4.93 3.80
(y-offset) 30.4% (−9.7%) 39.3% (+4.5%) 30.3% (+5.2%)

C 9.55 5.32 2.59
(x-offset) 54.7% (+2.4%) 30.5% (+2.3%) 14.8% (−4.8%)

B. Classification Performances

The classification performance is measured by 1-nearest
neighbor (1-NN) algorithm. The parameters of AWSWD are
set to l = 5 and λ = 50. As for SwedishLeaf and FaceAll, we
observed in the preliminary experiment that the classification
performance is significantly high when subsequence length l is
small. Thereby, we set l = 5. γ is set to 0.001 for Soft-DTW,
and λ1 = 0.1, λ2 = 0.01, σ = 5 for OPW. As for shapeDTW,
we use HOG1D as the shape descriptor for single dimensional
data and Raw-Subsequence for multi dimensional data [4],
and set the subsequence length to 7. The accuracy (Acc)
and mean Average Precision (mAP) are used for measuring
the performances. The results are shown in TABLEs III and
IV. The best and second performances are represented in
underlined bold and just bold. The results demonstrated that
the classification performances of the proposed AWSWD are
comparable to or outperform other state-of-the-art methods.
Especially, the proposed AWSWD outperforms the OPW
distance, which is also based on the OT distance, on almost all
datasets. This indicates the effectiveness of the consideration
of neighborhood structure on the OT-based sequence matching.

V. CONCLUSION

We have presented a shape-aware Wasserstein distance
between sequence data building upon optimal transport frame-
work. The proposed AWSWD considers the shape of se-
quences around each elements in addition to distances of
elements and their order position. Then it calculates their
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TABLE III
CLASSIFICATION PERFORMANCES (ACCURACY: ACC).

method DTW [2] SoftDTW [7] DDTW [3] ShapeDTW [4] OPW [8] AWSWD
Swedish-Leaf 0.7920 0.7888 0.8784 0.9040 0.9040 0.9408

FaceAll 0.8077 0.8077 0.8728 0.7757 0.7929 0.9444
ItalyPowerDemand 0.9436 0.9504 0.8999 0.9201 0.8756 0.9572

SonyAIBORobotSurface1 0.5225 0.7255 0.7521 0.7388 0.9118 0.9068
SAD 0.9636 0.9636 0.9077 0.9691 0.8905 0.9482
HAS 0.8135 0.8143 0.7038 0.7887 0.8173 0.7489

MSRAction3D 0.7692 0.7692 0.7070 0.7766 0.6667 0.7619

TABLE IV
CLASSIFICATION PERFORMANCES (MEAN AVERAGE PRECISION: MAP).

method DTW [2] SoftDTW [7] DDTW [3] ShapeDTW [4] OPW [8] AWSWD
Swedish-Leaf 0.4928 0.4932 0.6510 0.6661 0.5643 0.7210

FaceAll 0.5483 0.5483 0.5185 0.5189 0.5269 0.6142
ItalyPowerDemand 0.7335 0.7335 0.7028 0.7686 0.6629 0.7717

SonyAIBORobotSurface1 0.6513 0.6512 0.7095 0.6652 0.7418 0.7798
SAD 0.5658 0.5658 0.4403 0.5938 0.3917 0.5830
HAS 0.4461 0.4461 0.4166 0.3642 0.4211 0.4616

MSRAction3D 0.5343 0.5343 0.4787 0.5419 0.4718 0.5070

weights automatically. As presented herein, numerical eval-
uation demonstrated the effectiveness of AWSWD for classi-
fication tasks. Our future work includes development of faster
optimization algorithms, and applications to real-world prob-
lems that involve video alignments and purchase predictions.
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