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Abstract—Multivariate time series forecasting problem has
attracted enormous research in recent years, and many deep
learning models have been proposed and claimed to be effective
in different tasks. We find that many of these models were
tested in a simple one-step-ahead strategy, which does not apply
to real scenarios requiring multistep forecasting. This paper
compares the performance of three well-known deep learning
models (DA-RNN, LSTNet, and TPA-LSTM) for multivariate
time series forecasting under three forecasting strategies (One-
Step-Ahead, Recursive, and MIMQO) for multistep forecasting.
We conducted our experiments on six datasets (NASDAQ 100
Stock Data, Beijing PM2.5 Data Set, Electricity, Exchange Rate,
Solar Energy, and Traffic) with four forecasting horizons (3, 6,
12, and 24). Our results reveal that, under the Recursive strategy,
these deep learning models constantly suffer from accumulated
errors and thus cannot carry out real multistep forecasting tasks.
However, combining them with the MIMO strategy can tackle
this problem and thus enables one-step-ahead deep learning
models for multistep forecasting.

Index Terms—time series forecasting, multivariate, multistep
forecasting, deep learning models, forecasting strategies

I. INTRODUCTION

Time series forecasting is a subdomain of time series analy-
sis in which the historical data are analyzed to develop a model
describing its underlying characteristics and extrapolated into
the future.

Time series analysis has been dominated for a few decades
by statistical methods such as AutoRegressive Integrated
Moving Average (ARIMA) [1] and ExponenTial Smoothing
(ETS) [2]. Despite the fact that many statistical methods have
demonstrated great forecasting ability in different tasks [3],
[4], most of these works are conducted on univariate time
series. In most cases, the data can be multivariate time series
(MTS), where complex interdependencies must be captured to
perform accurate predictions.

Over the last decade, the development of artificial in-
telligence has attracted much attention, and many machine
learning models have been proposed to analyze time series [5],
[6]. Many attempts at MTS forecasting problems have been
made in recent years, especially with deep learning models
based on recurrent neural networks (RNN), convolutional
neural networks (CNN), and attention mechanisms [7]. Among
these models, there are three crucial ones in the field of MTS
forecasting, i.e. Dual-stage Attention-based Recurrent Neural
Network (DA-RNN) [8] for introducing attention mechanism

ISBN: 978-1-6654-6798-8

1477

into MTS analysis for the first time, Long- and Short-term
Time-series network (LSTNet) [9] for combining CNN and
RNN for MTS data, and Temporal Pattern Attention Long
Short-Term Memory (TPA-LSTM) [10] for introducing the
Temporal Attention Pattern concept for selecting relevant
variables.

Nevertheless, although multistep forecasting was claimed to
be conducted in their original papers, only a one-step-ahead
strategy was actually applied according to their descriptions
for problem formulation. In this strategy, the authors generated
a single-step-ahead forecast and fed the model with the new
actual data to generate the following step. This strategy is
intuitive but can only apply to limited cases where multistep
forecasting is not required.

For multistep forecasting in real life where we do not
possess future values, the Recursive and the Multi-Input Multi-
Output (MIMO) strategies were often considered, and several
machine learning models were proven to be applicable with
these strategies to many tasks [11], [12]. To verify the ap-
plicability of deep learning models on multistep tasks, we
conducted several experiments where we: 1) implemented
these three models using multistep forecasting strategies, 2)
evaluated and compared their performance over different hori-
zons, and 3) tested their applicability for multistep forecasting.

The rest of this paper is organized as follows. In section
II, we present a concise description of all the involved deep
learning models and the forecasting strategies. Section III
presents how we organized and conducted the experiments.
We present the comparison results and discussions based on
these results in section IV. Section V gives the conclusion.

II. METHODS

This section reviews the three previously mentioned deep
learning models and defines two forecasting strategies.

A. Deep Learning Models

1) DA-RNN: DA-RNN has attracted much attention since
it appeared on IJCAI 2017 [8]. It presents a sequence-to-
sequence model [13] combined with the attention mechanism.
Unlike the traditional attention models for natural language
processing tasks, which include the attention mechanism only
at the decoder stage, DA-RNN includes it at both the encoder
and decoder stages. Inside the encoder, one attention weight
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measures the importance of the k-th input series at time ¢,
while at the decoder stage, another attention weight measures
the importance of the i-th hidden state from encoder output
for the final forecasting. This two-stage attention mechanism
enables the model to capture the interdependencies between
relevant series and the long-term dependencies at the encoder
and decoder stages, respectively.

2) LSTNet: LSTNet was presented by Lai et al. on SIGIR
2018 [9]. Firstly, LSTNet conducts a non pooling convolution
on the preprocessed data to capture the dependencies between
multivariate series. Then, a Rectified Linear Unit (ReLU)
activated Gated Recurrent Unit (GRU) layer is added to
capture the long-term interdependencies. A Recurrent-Skip
component is elaborately designed to address the gradient
vanishing problem for very long-term sequences. Specifically,
skip-links are added into the information flow of the RNN,
which allows the hidden cell to look at the state in adjacent
periods. This procedure ensures that the network can better
take care of the seasonality. A dense layer then integrates the
outputs of the GRU layer and the skip layer. Lastly, the author
includes an autoregressive component to deal with the violate
scale changing in the series.

3) TPA-LSTM: Shih et al. proposed TPA-LSTM in 2019
[10]. It ameliorates the traditional attention mechanism for
MTS forecasting by focusing on selecting the relevant series
rather than the relevant time steps. Firstly, it uses LSTM to deal
with the preprocessed time series to extract the hidden state
matrix whose rows and columns represent the corresponding
series and time steps. Then, a CNN layer detects the temporal
patterns of every series by convolving the kernel with the row
vector of the hidden state matrix output previously by LSTM.
After that, a scoring function for the attention mechanism is
applied, then the model calculates the corresponding attention
weights using the sigmoid function and generates the context
vector in which every row represents the temporal pattern of
the corresponding series. Finally, combining the results from
an autoregressive module as per LSTNet, the model integrates
the hidden state and the context vector to yield the final
forecasting.

B. Multistep Forecasting Strategies

A time series forecasting problem can be transformed into
a supervised learning task that machine learning and deep
learning methods can do. A commonly used approach is to
formulate a training set by lagging and stacking the historical
series several times.

For a one-step forecasting problem, we can construct a
training set {X,Y} of shape [(N — n),n| and [(N — n), 1]
where IV is the total length of the series and n is the number
of times we lag the series, often referred to as the window
length:

hn Y2 t Yn Yn+1
Y2 Ys o Ynta Yn4-2
X = . . . Y= (D
YN—n YN—-—n+1 YN-1 YN

Each row in X represents a training example, while its target
corresponds to the element in the same row in Y.

Nonetheless, as Y is a vector, (1) only describes the strategy
for one-step-ahead forecasting. Two strategies extending the
framework to tackle the multistep forecasting problem are
discussed in this section.

1) Recursive: In Recursive strategy [11], a single model f
is trained and used recursively to generate multistep forecast-
ing by taking the predicted values as the input for future time
steps.

Yer1 = FWt, ooy Yt—mp1) + Wiga )

with t € {n,..., N — 1}. w;y; is a noise term.

2) Multi-Input Multi-Output (MIMO): The Recursive strat-
egy is intuitive but suffers from accumulated errors. To alle-
viate this problem, the MIMO strategy [12] was proposed.

The MIMO strategy learns a single multiple output model
F:

[yt-‘rHa "'ayt-‘rl] = F(yt7 "'ayt—n-i-l) +w (3)

with ¢t € {n,..., N — H} where H is the forecast horizon.
F :R" — R is a vector-valued function and w € R is a
noise vector.

In another formulation, the MIMO strategy extends (1) into
the following format:

[ Y1 Y2 Yn
Y2 Y3 Yn+1
X = . . . )
|YN—n—H+1 YN-n—-H+2 *°° YN—-H @)
[ Yn+1 Yn+2 Yn+H
Yn+2 Yn+3 Yn+H+1
Y = . . .
|YN-H+1 YN-H+2 YN

The rationale of the MIMO strategy is that it outputs
all future values in one vector during the forecasting stage.
Meanwhile, it models the dependency between the values that
characterizes the time series [14].

III. EXPERIMENTS
A. Datasets and Setup

In our experiments, six datasets are selected to evaluate
these deep learning models for MTS multistep forecasting.
The statistics of these datasets are listed in Tab. 1.

o Electricity': Hourly electricity consumption of 321 clients
from 2012 to 2014. Complex seasonal data.

o Exchange Rate?: Daily exchange rates of eight coun-
tries, i.e., Australia, British, Canada, China, Japan, New
Zealand, Singapore, and Switzerland, from 1990 to 2016.
Nonseasonal data.

Thttps://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
Zhttps://github.com/laiguokun/multivariate-time-series-data
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TABLE I
DATASET DESCRIPTION

Dataset | Length | Dimension | Frequency | Seasonality
Electricity | 26304 | 321 | 1hour | Complex
Exchange-Rate | 7588 | 8 | 1day | Nonseasonal
NASDAQ-100 | 40560 | 82 | 1 minute | Nonseasonal
Solar-Energy | 52560 | 137 | 10 minutes |  Seasonal
Traffic | 17544 | 862 | 1hour | Seasonal
Beijing-PMa.5 | 43800 | 8 | 1hour | Seasonal

o NASDAQ 100 Stock Data’: Stock price by minute from
July 26 to December 22, 2016, of 81 corporations under
NASDAQ 100 which are used as the driving series and
the NASDAQ Index 100 used as target series. Nonsea-
sonal data.

o Solar Energy*: 10-minute-level solar power production
data from photovoltaic plants in Alabama State in 2006.
Seasonal data.

o Traffic>: Hourly data from the California Department of
Transportation describing the road occupancy rates on
San Francisco Bay area freeways from 2015 to 2016.
Seasonal data.

o Beijing PM, 5 Data’: Hourly data of the PM 5 data of
US Embassy in Beijing from 2010 to 2014, which is used
as the driving and target series. Meteorological data from
Beijing Capital International Airport are also included as
driving series as well. Seasonal data.

If not specified, all the series in the datasets are harnessed
as target series. We split our datasets into training, validation,
and test sets in chronological order by the ratio of 8:1:1.

B. Parameter Settings and Evaluation Metric

For simplicity, we took the same parameterization reported
in [9] and [10] for LSTNet and TPA-LSTM on Electricity,
Exchange-Rate, Solar-Energy, and Traffic. For DA-RNN, we
followed the same parameter settings in [§] on NASDAQ-
100. For other situations, the tunable parameters were selected
based on the results from the validation set. The source codes
of the aforementioned models are publicly available according
to their papers [8]-[10].

Concretely, for LSTNet on NASDAQ-100 and Beijing
PM, 5, we set the window size w as 60 and 168, respectively.
The periodicity pattern for Recurrent-skip was set to 30 and
24, and the AR components were both characterized to 24. The
recurrent and convolution layer’s hidden dimensions were set
to 100, while the CNN kernel size was 6. Apart from the same
parameterization of LSTNet, we set the number of the hidden
state features to 12 on both NASDAQ-100 and Beijing PMs 5
Dataset for TPA-LSTM.

3https://cseweb.ucsd.edu//~yaq007/NASDAQ100_stock_data.html
“https://www.nrel.gov/grid/solar-power-data.html
Shttps:/pems.dot.ca.gov/
Shttps://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data

For DA-RNN, on Beijing PMs 5, we set the input window
size to 10. On Electricity, Traffic, Exchange-Rate, and Solar-
Energy, the window size was set to 24, 24, 10, and 144,
respectively. Meanwhile, we fixed the encoder’s and decoder’s
hidden dimensions to 64.

We performed a 128-minibatch training and a dropout after
each layer as per LSTNet with a dropout rate of 0.2. The
Adam optimizer [15] was used for all models with a learning
rate of 0.0003. Furthermore, unlike the original normalization
settings reported in LSTNet and TPA-LSTM, which causes
information leakage, we normalized the training, validation,
and test sets using the max-min values on their own.

We used the Root Relative Squared Error (RSE) as our
evaluation metric with a slight difference with the one in [9],
concentrated more on the errors of each series:

H .
RS — L i \/Zt:l(yt,i — §.i)?
= —
i=1 \/Zf{:l(ym —UrHq)?
where H is the forecasting horizon, and K is the number
of series in the datasets. y; is the ground truth at time ¢. ¥

is the forecast produced by the model, and 7 represents the
mean of y.

(&)

IV. RESULTS AND DISCUSSION

We present our results in Tab. II with the best results
highlighted in bold and the following contents.

Tab. II represents the forecasting errors of each model on six
datasets with different seasonalities, under two strategies, i.e.
MIMO and Recursive. The results are displayed with those of
the original One-Step-Ahead, which uses the new actual data
as the inputs. We use it as a baseline.

The first question is whether the MIMO strategy can be
applied to deep learning models for multistep forecasting.
Fig. 1 illustrates the average RSEs v.s. different strategies. As
the figure shows, the Recursive strategy performs the worst
while the MIMO strategy performs better with tolerable errors

M [STNet
25 TPA-LSTM

m=s DA-RNN
2.0

RSE Scores
5

(=}
W

pre—

One-Step MIMO Recursive

Fig. 1. Average of RSEs over horizon for different strategies
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TABLE II
FORECASTING RSES FOR DIFFERENT MODELS ON DIFFERENT FORECAST HORIZONS WITH DIFFERENT STRATEGIES

Strategy \ One-Step-Ahead \ MIMO \ Recursive
Dataset ‘ Horizon ‘ LSTNet TPA-LSTM  DA-RNN ‘ LSTNet TPA-LSTM  DA-RNN ‘ LSTNet TPA-LSTM DA-RNN
3 0.0852 0.0823 0.0858 0.9020 0.4310 0.4748 1.9427 2.2879 2.3300
Electricit 6 0.0896 0.0920 0.0882 1.1232 0.5387 0.5039 1.9981 2.2502 2.2161
y 12 0.0951 0.0945 0.0923 1.2349 0.6626 0.5631 2.8920 2.7278 2.7953
24 0.1022 0.1011 0.1019 1.3857 0.9764 0.7004 3.7038 4.0929 3.2050
3 0.0233 0.0184 0.0173 0.2469 0.1224 0.1248 1.5907 3.1972 1.0445
Exchanee 6 0.0295 0.0244 0.0233 0.2929 0.1404 0.1203 1.6755 42372 1.0606
& 12 0.0370 0.0342 0.0338 0.3984 0.1616 0.1441 2.0769 4.5510 1.2025
24 0.0452 0.0452 0.0429 0.4023 0.1855 0.1718 2.2096 4.7817 1.5694
3 0.2580 0.1266 0.1301 0.9425 0.4761 0.4867 7.8994 54117 5.2139
NASDAQ-100 6 0.2618 0.1327 0.1480 0.8904 0.4888 0.5159 7.9054 6.7827 6.7231
12 0.2915 0.1493 0.1505 0.9340 0.5289 0.4683 8.1166 6.8759 6.9342
24 0.3266 0.1622 0.1627 1.0992 0.5809 0.6408 9.2435 7.3209 8.7724
3 0.1900 0.1815 0.1590 0.2955 0.2723 0.2502 0.3940 0.3893 0.3263
Solar 6 0.2601 0.2417 0.2309 0.3705 0.3363 0.3299 0.4707 0.5135 0.4166
12 0.3129 0.3336 0.4233 0.3630 0.4950 0.4729 0.5466 0.6701 0.7990
24 0.4525 0.4609 0.5752 0.4450 0.5033 0.6903 0.7218 0.7620 0.8921
3 0.4923 0.4609 0.4348 0.7032 0.7123 0.8329 0.7417 1.2104 1.1012
Traffic 6 0.5003 0.4855 0.5016 0.7805 0.8166 0.8849 1.2999 1.2282 1.3874
12 0.5125 0.4960 0.6285 0.8181 1.1805 1.0014 1.2037 1.3951 1.5951
24 0.5299 0.5201 0.5922 0.9947 1.2482 1.1108 1.3574 1.2777 1.7765
3 0.2868 0.2691 0.2722 0.5544 0.4527 0.4997 0.7581 0.6940 0.7004
Beiting PM2.5 6 0.3533 0.3480 0.3363 0.7246 0.7192 0.6203 1.2652 1.2198 1.0327
Jing ’ 12 0.4418 0.4332 0.4333 1.0816 0.9236 0.9941 1.6615 1.6505 1.7788
24 0.5019 0.4972 0.5001 1.4984 1.4232 1.3388 2.4471 2.8298 2.6719
Winning count \ 2 12 10 \ 6 7 11 \ 7 7 10
35 L2 = [STNet
° TPA-LSTM
3.0 /. 1.0 s DA-RNN
025 /:/ Strategy-Model
g L /: / —— Recursive LSTNet é 0%
R20 Recursive TPA-LSTM & 06
K s 1 —=— Recursive DA-RNN =
e 1 MIMO LSTNet =
1.0 —— MIMO TPA-LSTM
— MIMO DA-RNN 0.2
0oz
0.5 gt B
3 6 12 24 0.0 o : S {
i Electricity Exchange NASDAQ Solar Traffic Beijing PM2.5
Horizon Complex NonseasonalNonseasonal Seasonal — Seasonal — Seasonal

Fig. 2. Average of RSEs for different forecasting horizons

compared to the One-Step-Ahead strategy. Less accumulated
errors for the MIMO strategy are reported in Fig. 2 as the
slopes of the MIMO curves at the bottom are much smaller
than that of the Recursive strategy on top.

Fig. 3 presents the average of RSEs over four horizons for
different datasets in MIMO strategy. One obvious finding from
Fig. 3 is that although all the three models can capture the
seasonal pattern, the performance of LSTNet falls behind TPA-
LSTM and DA-RNN when facing series with zero or complex
seasonalities. One explanation could be that the Recurrent-

Fig. 3. Average of RSEs for different datasets in MIMO strategy

Skip component in LSTNet dedicated to capturing seasonal
patterns is not applicable in this situation, as the periodicity
pattern needs to be specified as a hyperparameter. Inversely, for
seasonal data, periodicity specification is favorable for LSTNet
in the case of Solar and Traffic, while less promising for
Beijing PM5 5 whose seasonality is less evident.

While TPA-LSTM uses a CNN to capture the temporal
patterns, DA-RNN uses the attention mechanism in its decoder
to put more importance on relevant time steps. So it is also
interesting to note that DA-RNN performs slightly better in
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many cases than TPA-LSTM. This means the CNN component
in TPA-LSTM is weaker than the attention mechanism in
DA-RNN’s decoder in capturing temporal patterns in long
sequences. Furthermore, we noticed that a well-designed at-
tention mechanism might help with the input scale variation.
This accords with our observations that although DA-RNN
does not include the AR component to respond to the changing
scale, which LSTNet and TPA-LSTM both use, it still gives,
in general, the best results.

V. CONCLUSION

This investigation aimed to determine whether the deep
learning methods are suitable for dealing with the real MTS
multistep forecasting problem. The results give a positive
answer, which is that by combining with the MIMO strategy,
deep learning models are competent to carry out real multistep
forecasting tasks. In the meantime, our experiments also
revealed several interesting findings on their performances
dealing with data’s seasonality. These could help us select
the proper deep learning models for different tasks. Besides,
due to the limited length of the paper, we did not include
the statistical methods for comparison. Furthermore, other
strategies dedicated to multistep forecasting [14] and the
recently brought transformer models for time series forecasting
[16] are worthy of future research as well.
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