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Abstract—Reinforcement Learning has drawn huge interest as a
tool for solving optimal control problems. Solving a given problem
(task or environment) involves converging towards an optimal
policy. However, there might exist multiple optimal policies that
can dramatically differ in their behaviour; for example, some
may be faster than the others but at the expense of greater risk.
We consider and study a distribution of optimal policies. We
design a curiosity-augmented Metropolis algorithm (CAMEO),
such that we can sample optimal policies, and such that these
policies effectively adopt diverse behaviours, since this implies
greater coverage of the different possible optimal policies. In
experimental simulations we show that CAMEO indeed obtains
policies that all solve classic control problems, and even in the
challenging case of environments that provide sparse rewards.
We further show that the different policies we sample present
different risk profiles, corresponding to interesting practical
applications in interpretability, and represents a first step towards
learning the distribution of optimal policies itself.

Index Terms—Reinforcement
Metropolis, MCMC

Learning, Curiosity model,

I. INTRODUCTION

Reinforcement Learning (RL) is a sequential decision frame-
work where a model (agent) has to solve a task in multiple
steps and find the optimal strategy (policy, 7) to do so. The
agent interacts directly with its environment and learns through
this experience. After each time step ¢ that the agent performs
an action a;, the environment returns a new state S¢+1 and
a reward r;. The agent then seeks to maximise the expected
return i.e. the discounted sum of rewards received over time:
G = E[rg +yr1 +v?r2 + ... 41y + ... |s0); where gamma
is a discount factor of future rewards. We define the value of
state s, V™ (s), as the expected return obtained when following
policy 7 from state s; and the Q-value Q™ (s,a) as the state
value obtained after performing action a in state s.

V7(s) = Ex [0 Y 7 (sthr1) 8] = 32, 7(als)Q7 (s, a)

An optimal policy n* is a policy that reaches the maximal
value possible for all states. Such a policy always exists but
might not be unique [14]. For instance, given policies mp,
parameterized by 6;, in parameter space (2, there are many
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0; that represent an optimal policy. Most of the literature
focuses on finding models and algorithms that learn policies
iteratively and converge towards a unique optimal policy [16].
But considering that many optimal policies exist, we propose
a process to generate different optimal policies.

Indeed, even-though all desired policies may be optimal, they
may differ in their behaviour towards solving the task. We can
argue that an optimal policy is the fastest and most consistent
one that solves the given task. However, these two concepts
can be antagonist depending on the policy’s risk profile. Two
policies can be optimal but one might take more risk than the
other and solve the task faster. Sutton and Barto [16] give an
example of policies obtained using Q-learning or SARSA and
show that in the cliff problem (see table I), both methods solve
the task but Q-learning takes more risk by walking near the
edge while SARSA takes a longer, safer, path.

As many optimal policies exist, then a distribution of optimal
policies also exists. Learning such a distribution would allow
to sample different optimal policies and choose the one which
profile suits the best the task needs. For instance, the mode
of the learnt distribution corresponds to the minimum variance
optimal policy. However, to learn a distribution, many samples
are needed. This paper addresses the question of whether or
not it is possible to sample many different optimal policies.
While all existing approaches focus on converging towards
one optimal policy, we try to find a solution to generate many
different ones that could correspond to different profiles.

We adapted the Metropolis algorithm [6] for RL in order to
obtain a Markov chain of optimal policies whose stationary
distribution corresponds to the distribution of optimal policies.
We thus propose to sample a suitable distribution featuring
intrinsic and extrinsic rewards (see Eq. (8)). We show that the
obtained policies effectively adopt different behaviours while
solving the desired tasks.
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II. RELATED WORK AND BRIEF INTRODUCTION TO
REINFORCEMENT LEARNING

We cited Q-learning [17] and SARSA [16] above as classic
methods used in RL. These two methods build Q-tables that
store for every state-action pair the mean reward obtained
afterwards until converging towards good estimations. After
convergence, the optimal policy is the one that always follows
the action that returns the highest value. While these methods
try to evaluate Q values directly, other parameterize the policy
itself like policy gradient methods [15]. The advantage of the
latter being that these are capable to learn stochastic policies
but also perform in continuous action spaces.

Deep Learning had a massive impact on RL and had been
naturally incorporated into the cited approaches. This led to the
emergence of Deep Q-learning [11], which uses deep neural
networks to evaluate Q-values in large state spaces, or to
Deep Policy Gradients that use a neural network parameters
as policy parameters. Some other methods bridged the gap
between these approaches like Actor Critic methods that use
2 neural networks, one that acts as policy and an other that
evaluates state values [2].

Generative Adversarial Networks (GAN) [5] are closely re-
lated to Actor Critic where the actor network can be assim-
ilated to a generator and the critic to a discriminator [13].
Indeed, GAN have been used in imitation learning for instance
where expert demonstrations are used to learn a policy [7].
In this case the generator has to generate trajectories while
the discriminator has to decide whether the trajectory’ comes
from the available demonstration or not. However instead of
learning a new policy or outputting many different ones, the
aim is to mimic the expert behaviour. Yet again, there is a
close connection between this approach and GAN [4].

However these methods converge towards a unique optimal
policy, rather than generate different optimal ones. All these
advances show that using generative approaches to learn an
optimal policy is possible but for our knowledge, there is
yet no generative model that is used to generate different
optimal policies that output different behaviours and different
risk profiles. This work is a first step towards generating such
samples in the hope of being then able to learn a distribution
of optimal policies in future work.

III. METROPOLIS AND DIRECT POLICY SEARCH

Our main objective is to sample from the distribution of
optimal policies. In this section we present a simple adaptation
of Metropolis algorithm to RL problems.

A. Metropolis Algorithm

Let 6 denote the parameters of a policy my. Rather than
searching directly for optimal 6, several works consider sam-
pling policy parameters ¢; using Markov Chain Monte Carlo

UIn RL literature, a trajectory is a successions of state action pairs or
states alone. A trajectory can be longer than one episode. In this work, we
constraint a trajectory to not exceed the length of an episode. Therefore, in
this context, the words episode and trajectory are equivalent

algorithms [1], [8]. For instance, in [8], Hoffman et al. showed
that for direct policy search, sampling directly from a trans-
dimensional distribution that is proportional to the reward
performs better than classic simulations methods. Therefore,
we model a distribution f(#), i.e the target distribution, that is
proportional to the expectation of a monotonically increasing
function U of the empirical return, i.e., it should be maximal
when the return is maximal; a utility function U(7).

f(0) o< p(0)n(6). (1)

where p(6) is a prior over € (in the simple case, uniform) and
7 the performance of 6 wrt the environment:

0(0) = Eyri0)[U(7)] = / Up(rl)dr, @

where 7 denotes a trajectory (i.e. the succession of states
visited), p(7|0) is the distribution of 7 (i.e., the one induced
by following policy 7y), and U(7) the utility of 7. Provided
that 7(#) is non-negative, we can sample it via a Metropolis-
Hastings (MH) algorithm.

Denoting the empirical return by G (1) = Zf;ol ~ry, a usual

choice is U(7) = exp(G(7)/T). Therefore:

F(6:T) o< p(O)nr(6) = p(O)Ep(rio)[e“ T (3)
where T' denotes an inverse temperature parameter.

In practice, in order to apply the MH algorithm on f(6),
the evaluation of 1(6) must be substituted with an unbiased
estimate over N episodes,

1(0) = Ep(rj0)[U(7)]
_ 1 Y
~ U (0) = ;U(n), i~ p(r]0), @)
where Uy (6) denotes the empirical utility for 6 over N
episodes 7;. Algorithm 1 consider the noisy evaluation of the
utility function in Eq. (4), and is called Monte Carlo-within-
Metropolis [9], [10].

IV. CURIOSITY AUGMENTED METROPOLIS
A. Prior Bias

In section V-A, we showed that {6, }%_, are highly correlated;
due to a scaling factor among them. Indeed, as we considered
that p(0) ~ U[—a,a], there is no bound to 6; values and
therefore we obtain 01 = A0, with A a constant. A solution
is to constraint 6 € [—1,1]P but it is not possible to use
p(f) ~ U[-1,1], as it would cancel out anyway during the
calculation of § (see algorithm 1). However it is possible to
measure the variance of 0 from [—1,1]:

D
1
oj, = D E ]1ekj¢[f1,1](9ij —-1)% &)
j=0

and therefore we define: p(f) = e~
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Algorithm 1 Monte Carlo-within-Metropolis for RL

Require: K: the number of iterations, N: number of episodes
Initialise Agent m
90 ~ N(O JQID)
for £ from 1 to K do
9/ ./\/(Qk 1,UpID)
Run N episodes with 7y, , and compute Uy (65_1)
Run N episodes with 7g: and compute Uy ()
5o PO )
P(Or—1)Un (0k-1)
a <+ min(1,
€ ~ U,
if ¢ < o then
Gk — 0
else
O < 01
end if
end for
return {0, }%

B. Trajectory bootstrap

In Algorithm 1, we had to run N episodes twice to estimate
the mean return of 0;_; and 6. We could store the return
of 01 and use it in subsequent runs. However, the method
shown in Algorithm 1 was preferred to penalise the possible
variance of the returns obtained using 1.

An alternative to still penalise variance while avoiding to run
the IV episodes twice is to make use of importance sampling
and the advantage function [16]. Intuitively, it corresponds to
the extra reward that the agent could obtain by taking action
a over a random action: Ag(s,a) = Qg(s,a) — Vy(s). More
specifically, by defining G as a function of 6:

wa:/évmvwmf ®)

the advantage of ¢’ over 0y_1:

G(¢') = G(0k-1) + Egr Z’YtAe’ (st,at)

t=0
G(Ok-1) +—j{j;m/ j{:7mf(ﬂ )Aer (st at)

G(Or-1) +Zp0k 1()Z7T9'

— G(Gk,l) + E(g,\,/,(gkil) [Z e’ (a|s)A9/ (St, at)]

Ag/ St7 at)

= G(Op—1) + E.s~p(9k—1)Ea"’7r9k—1 |:
~ G(0k-1)
+ Es,awﬂ(%fl)ﬁ“f)k—

71-9/((]J|S)A61(St,at):|

7o, _, (als)

1 [H(T + (Vg (') = Vo, (s))] )
(7

mor(als) s the state visitation frequency

mo,_, (als)
and we used pg/(s) =~ pp,_,(s) because we already have

where II =

trajectories sampled from my, ,, so it is easier to obtain
po,_,(s) than pg/(s). Finally, TD Error [16] was used as
an estimator for the advantage in place of Q-values in order
reduce variability. This way, the return obtained using 6’ can
be estimated using the behaviour of the agent parameterised by
0’ on the trajectories obtained under 6;_1, noted my: (79, _,)-

C. Curiosity Module

As shown in section V-A, the previous implementation fails
on Griworld and CIliff environments. One of the main reason
explaining this failure is that the rewards in these environments
are sparse. This means that a reward of -1 at each time
step does not bring much information about the state of the
agent and how close it is from the goal. The only valuable
information are obtained either on the pit or when reaching the
goal. In a gradient free approach like Metropolis where there
is no criteria to drive the search, it means that the agent should
first reach the goal by luck before improving. Moreover, the
fact that there is no valuable information gathered at each run
makes the process get stuck at some points in parameter space
as all 0’ are drawn from N (0, 021p).

It is therefore necessary to implement a mechanism that drives
exploration dynamically. Inspired by the approach in [12], we
propose a curiosity module that consists of a Neural Network
that learns to predict the next state given the last state of an
agent. This way, if the network learns to predict the trajectory
of 0 and @ tries something new, it will fail and output a
large prediction error, called the intrinsic reward. The intrinsic
reward is then added to the extrinsic reward, i.e the reward
returned by the environment:

= ,ué(T) +(1—

with £*) the prediction error (i.e. the loss) at step k and
1 € [0, 1]. The utility is thus computed on this modified reward

1 N
= N Z U(’Tl) T ™~
i=1
where, if we take U to be an exponential as above, we have

U(ri) = exp{pG(r;) + (1 — w)L(7)}.

The output ), are all stochastic optimal policies that fool
the curiosity module and that explore different trajectories.
Algorithm 2 details the procedure.

R(r) ) LF) (1), (8)

p(70), )

(10)

V. EXPERIMENTS AND RESULTS

Our proposed framework has been tested in Classic Control
Gym environments, Cartpole, Acrobot and cliff [3] as well as
on a gridworld. Table I shows environments details.

A. Simple Metropolis implementation

In this section we present the results obtained using the simple
implementation detailed in algorithm 1. The agent is a neural
network composed of 1 hidden layer of 8 neurons and a ReLU
activation function. The average return was estimated on 20
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Envir Cliff Cartpole Acrobot Gridworld

Snapshot _

e e e d NG

- E— < N

" [ ]

State Space s; € {1,..., 48} RT [—1, 1] x [—4m, 47] x [-97, 97] {1,..., 16}

Action Space a; € {0,1,2,3} {0,1} {0,1,2} {0,1,2,3}
Reward r; = -1 per move, 10 for the goal and -10 for the pit +1 per time step -1 per time step 1 per move, 10 for the goal and -10 for the pit

TABLE I: Specifications of Environments

Algorithm 2 CAMEO

Require: K: the number of iterations, N: number of episodes,
14 a constant
Initialise Agent m and ® the curiosity neural network
00 ~ N(O 0'2ID)
for k£ from 1 to K do
9/ ~ N(Qk,l,aglp)
Run N episodes with 7y, _, and store trajectories 7y, _,
for each trajectory 7'9(2)7 do
L(ry?) )« MSE(®(ry) ),
c(T;)) « MSE(®(rg (Tgk[
Train ® using ;C(TO,A )
L(7g,_,)  Llro,_) + L(7)) )
ﬁ(Tg/) <— E(Tg/) -+ ;C(Ta(}))
end for
Compute G(Tgk D)
G(ro) « G(mp (79,_,))
R(Tek 1) A :u’ G(Tek 1) + (1 - :u’) : ‘C(Tek—l)
R(te) - 1G(Te/) + (1 —p) - L(ro)
T01) « - (U(R(,,))
( ~ (U(E(1))
9' Un (6
5o PN
p(Or— 1)UN(9k 1)
a <+ min(1, fB)
€~ Z/l[071]
if € < o then 0, < ¢’
else 0, < 0,1
end if
end for
return {0, }5

(4)
70— 1) )
D)o ()

)

U(0)

episodes for every ;. The metropolis algorithm was done on
200 timesteps for Cartpole and 500 hundred for Acrobot.

Figure 1 presents the results obtained on Cartpole and Ac-
robot environments. Cartpole is solved while we converge
towards a mean average return of -80 which is on par with
great implementations according to gym leaderboard. Best
implementation achieves a score of -40; we believe that our
implementation can reach this score with enough iterations,
which is the main drawback of MCMC methods.

When visualizing the succeeding agents on Cartpole and

— Retumn
Count

0 % 0 75 100 125 150 175 200 0 100 200 300 400 500

Fig. 1: Average return for every new 6 (in blue) and incremen-
tal count of the number of 6; retained (in orange) on Cartpole
(left) and Acrobot (right) using simple implementation.

Acrobot, it is not obvious if they effectively adopt different
behaviours. We therefore plot the cosine similarity between
all pairs of retained 6; in figure 2. It appears that succeeding
0; are heavily correlated.

0

1615141312110 9 8 76 54 321 0
4239363330272421181512 9 6 3

— B RSNTERRANTRRSY
01234567891011R21B31UISIs SNIRARAARNRAARRIY

Fig. 2: Cosine similarity between pairs of retained 6; on Cart-
pole (left) and Acrobot (right) using simple implementation.

However, the simple approach fails when confronted to Grid-
world or Cliff. In both cases, the agent remains stuck, always
performing the same action. The reasons for this failure are
explained and tackled in section IV-C.

B. Results for CAMEO

In this section we present the results obtained for CAMEO on
Gridworld and Cliff. We recall that for these environments,
the rewards are sparse, and therefore the prior adaptation, as
well as the curiosity module are necessary. Here we kept the
same architecture for the agent while the curiosity module is
a neural network of 1 hidden layer of size 150 with a ReLU
activation function. As shown in figure 3, the model succeeds
in solving those two environments. We do not present the
results on Cartpole and Acrobot as they are similar to those
obtained without curiosity augmentation.

It is interesting to note in figure 3 that the prediction error
peaks when the model tries something new, even if it is not
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Fig. 3: CAMEO Results on Cliff (above) and Gridworld
(below). The figure presents the mean return, the Prediction
error and the count of #; retained over time steps
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Fig. 4: Cosine similarity between pairs of retained #; on Grid-
world (left) and CIiff (right) using CAMEO implementation.

a good move but also that it recovers quickly afterwards.
Moreover, we can note that the rate of 6; retained is nearly
linear, which shows that the ratio of rejection is low and
therefore that the sampling process is efficient. Finally, figure 4
shows that the 6; retained are less correlated than in the simple
implementation, which suggests that the curiosity module and
the prior are effective. However non correlated weights do
not always imply a different behaviour. Figure 5 shows the
aggregated state visitation frequency of 100 different policies
that solve the problems. The most efficient (shortest) paths
are the most taken but the state visitation frequencies are
non negligible for other paths. Therefore, the learned policies
effectively correspond to different behaviours.

Fig. 5: State visitation frequency aggregated on 100 policies
obtained using CAMEO on Gridworld and Cliff. Less visited
states are in light blue and most visited ones in dark shade

VI. CONCLUSION

In the context of reinforcement learning, we were able to
sample optimal policies on the fly and showed that the
resulting behaviours are diverse. We also showed that our
approach succeeded to output optimal policies even when the

rewards structure of our problems were sparse, by using a
curiosity module that encouraged exploration dynamically.

Our approach still bears some limitations as the policy spaces
of studied environments are discrete. As is generally the case
with Monte Carlo methods, convergence is more challenging
in high dimensions. To mitigate this, it is possible to replace
the standard proposal distribution with a policy guided pro-
posal that draws educated samples. The new distribution could
therefore explore larger spaces by focusing on areas of interest.
This will be subject to future work.
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