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Abstract—Financial time-series forecasting is one of the most
challenging domains in the field of time-series analysis. This
is mostly due to the highly non-stationary and noisy nature
of financial time-series data. With progressive efforts of the
community to design specialized neural networks incorporating
prior domain knowledge, many financial analysis and forecasting
problems have been successfully tackled. The temporal attention
mechanism is a neural layer design that recently gained popular-
ity due to its ability to focus on important temporal events. In this
paper, we propose a neural layer based on the ideas of temporal
attention and multi-head attention to extend the capability of the
underlying neural network in focusing simultaneously on multiple
temporal instances. The effectiveness of our approach is validated
using large-scale limit-order book market data to forecast the
direction of mid-price movements. Our experiments show that the
use of multi-head temporal attention modules leads to enhanced
prediction performances compared to baseline models.

Index Terms—Deep learning, Attention mechanism, Limit
Order Book, Financial Time-series

I. INTRODUCTION

Time-series analysis has been significantly improved by
recent machine learning and deep learning approaches. One
of the most challenging domains in time-series analysis is
financial time-series classification and prediction. The complex
dynamics of financial markets reflect in highly non-stationary
and noisy data. This characteristic and the large-scale high-
dimensional nature of financial data strongly affect the analysis
of financial time-series data. To tackle challenges in financial
time-series analysis, many approaches have been proposed
based on econometric, machine learning, and deep learning
techniques.

In recent years, the accessibility to large-scale datasets and
the improvements in computational capabilities have enabled
deep Learning to excel in a variety of domains such as com-
puter vision and natural language processing. Popular neural
network designs for financial time-series include Recurrent
Neural Networks (RNN) [1], of which the Long-Short Term
Memory (LSTM) [2] and the Gated Recurrent Unit (GRU) [3]

are the most widely used recurrent cells. Convolutional Neural
Network (CNN) [4], which was originally designed for visual
data, is nowadays also a popular choice for time-series data.

Recently, neural networks that are designed using multi-
linear operations have also shown competitive performance
in time-series analysis tasks compared to recurrent or con-
volutional networks [5]. The Temporal Attention-Augmented
Bilinear (TABL) is a neural network layer based on bilinear
projection and attention mechanism that adaptively learns to
mask out irrelevant time instances [5]. A new architectural
design called Transformer [6], which heavily employs multiple
attention modules, has emerged as a state-of-the-art model in
language understanding tasks [7], as well as vision understand-
ing tasks [8].

In this paper, inspired by the recent success of multi-
head attention design, we propose an extension of the TABL
network with multi-head attention design. The new design
enables a bilinear mapping with the ability to simultaneously
learn to focus on different temporal instances in the input
time-series. As a result, more discriminative features can
be extracted using our neural layer design, which leads to
performance improvements compared to the original TABL
networks. The remainder of this paper is organized as follows.
In Section II, we provide a literature review on deep learning
research for financial time-series forecasting. In Section III, we
describe the proposed multi-head attention design for bilinear
mapping. In Section IV, experimental protocols and empirical
results are presented. Section V concludes our paper.

II. RELATED WORKS

The complex dynamics of financial data and the existence
of large-scale datasets have fostered the use of deep learning
models in financial applications. Among those, analysis tasks
derived from high-frequency Limit-Order Book (LOB) data
have attracted great attention from the community due to its
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unique capability in tracking market dynamics. A comprehen-
sive description of LOBs can be found in [9].

Since our work focuses on analyzing LOB data, here we
review related works in LOB research. There have been several
works using LOB data. For example, the spatial distribution
in LOB has been studied in [10] via deep neural networks.
The LOB data is generally highly non-stationary and re-
quires great attention in terms of pre-processing. Adaptive
data normalization schemes have been proposed recently to
tackle such challenges [11], [12]. Designing suitable neural
network architectures for time-series derived from LOB has
also been the focus of several works, including both manually
[13], [14] and automatically generated network architectures
[15]. Besides recurrent networks and TABL networks, neural
networks constructed from Bag-of-Feature layers [16] have
also demonstrated a great fit for variable-length sequences.

Among the human expert designs, the attention module has
shown a consistent ability to enhance the baseline models.
The main idea of an attention unit is to learn to focus on
relevant parts of the input while masking out unimportant
parts of it. Attention computation in neural networks was
first introduced for machine translation tasks by the work of
[17]. Incorporation of attention mechanism is also popular
among time-series analysis community [5], [14], [18]–[20].
Our work relies on a computationally fast and efficient design
called Temporal Attention-augmented Bilinear Layer (TABL)
network [5], which has been shown to achieve excellent per-
formance in both computational cost and modeling capacity.
To have a better understanding of our proposed multi-head
attention design in Section III, the working mechanism of a
TABL is described next.

In TABL, the bilinear projection incorporating a temporal
attention mechanism produces an output matrix Y ∈ RD′×T ′

given an input matrix X ∈ RD×T . X is a multivariate time-
series in which each column represents the D features at a
certain time instance, for a series of length T . A TABL layer
performs five computational steps to transform the input X to
the output Y as follows:

X̄ = W1X. (1)

E = X̄W, (2)

αij =
exp(eij)∑T
k=1 exp(eik)

, (3)

X̃ = λ(X̄⊙A) + (1− λ)X̄, (4)

Y = ϕ
(
X̃W2 +B

)
. (5)

III. TEMPORAL MULTI-HEAD ATTENTION BILINEAR
LAYER

Our proposed neural layer is constructed based on the
structure of TABL. The main idea of our design is to augment
the bilinear mapping with multiple attention computation
units (otherwise called attention heads), which are calculated
independently (in parallel). By using multiple attention heads,
we hypothesize that for certain input series, the salient features

can appear in pairs, triplets, or larger subsets, which cannot
be captured by a single attention head. Thus, by extending
the number of attention heads, we might be able to detect
more relevant features that lie within the input data. To reach
this goal, the intermediate output in the TABL layer after
going through the linear transformation in the first dimension
(output of Eq. (1)) is used as the input of multiple soft
attention heads, generating multiple attended features X̃ as
in Eq. (4) for each attention head. Therefore, if we consider
K attention heads, each of which is associated with a weight
matrix {W(k)}, k = {1, ...,K}. The output of all attention
heads must be combined based on a strategy, which can be,
e.g., summation or concatenation. In this paper, we investigate
concatenation for combining the outputs of attention mecha-
nisms as the outputs of each of the attention mechanisms are
used without any processing and losing information.

The computational steps of our Multi-head Temporal At-
tention Bilinear Layer (MTABL) with K attention heads are as
follows:

• The first step in MTABL is similar to TABL, which
projects each temporal slice (column) of the input matrix
to a D′-dimensional feature space:

X̄ = W1X. (6)

• In the second step, the resulting feature matrix is passed
through K parallel attention heads, each of which learns
to focus on an important temporal instance:

E1 = X̄W(1),E2 = X̄W(2), ... ,EK = X̄W(k) (7)

where all W(k) ∈ RT×T is the weight matrix to compute
attention in the k-th head.

• The un-normalized attention matrices are then normalized
by the softmax function in a row-wise manner, similar
to Eq. (3), generating the attention masks {A(k)}, k =
{1, ...,K}

• The final attended features X̃ for each attention head
are computed by combining the original and masked-out
features using the attention mask {A(k)} and λ:

X̃(1) = λ(X̄⊙A(1)) + (1− λ)X̄.

X̃(2) = λ(X̄⊙A(2)) + (1− λ)X̄.

...

X̃(K) = λ(X̄⊙A(K)) + (1− λ)X̄.

(8)

λ, which is constrained to have a value between [0, 1],
represents the fraction of original information that is
relevant and should be allowed to flow through the
network along with the attended features. For this reason,
it is more intuitive to use a single value of λ for all
attention heads.

• All K attended features X̃(k) are combined together as
a single matrix. To end this, the concatenation is used
to combine {X̃(k)}. For the concatenation scheme, even
though all attended features have the exact same size, it
is counterintuitive to concatenate {X̃(k)} on the second
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w(K)

Fig. 1. Schematic illustration of the proposed MTABL layer

dimension i.e., the temporal dimension, since this means
that multiple features of a sequence are concatenated
to form a much longer sequence, therefore breaking its
temporal coherence. Thus, our formulation of the method
concatenates {X̃(k)} on the feature dimension, then com-
bines all the features of a given temporal instance by
linearly projecting them back to D′-dimensional space:

X̃ = W̃1

X̃(1)
...

X̃(K)

 ∈ RD′×T (9)

where W̃1 ∈ RD′×(D′·K) is a weight matrix that is
learned to combine the contenated features.

• In the final step, similar to TABL, MTABL computes the
output sequence Y.

Fig. 1 illustrates the structure of MTABL.
The complexity of TABL is O(D′DT +D′TT ′ +2D′T ′ +

D′T 2 + 3D′T ) [5]. Due to the additional attention heads and
the combination of their respective outputs, the MTABL is of
greater computational complexity. In particular, for a MTABL
with K attention heads, the number of additional multiplica-
tions involved in Eq. (7) w.r.t Eq. (2) is K−1. Furthermore, an
additional complexity term of order O(D′(D′·K)T ) is implied
by the multiplications in (Eq. (9)). The overall complexity of
our proposed method is thus O(D′DT +D′TT ′ + 2D′T ′ +
KD′T 2 + 3D′T +D′(D′ ·K)T ).

IV. EXPERIMENTS

The performance of our model is evaluated on the mid-price
movement prediction task using the publicly available FI-2010
dataset [21]. We used the first 40 dimensions of the feature
vectors, which correspond to the top ten bid and ask prices and
volumes of the LOB. For each feature vector, the authors in
[21] derived the labels for future movements of the mid-price
in the next H = {10, 20, 30, 50, 100} order events, which are
referred to as prediction horizons.

To evaluate the performance of MTABL in comparison to
TABL, we used the same experimental protocol of TABL
used in [5]. We trained all the networks to predict the future
movements of mid-price in the next 10 order events, i.e.,

the target label corresponding to H = 10. Three network
topologies proposed in [5] were used in our experiments as
the baseline models. The topology A consists of one TABL
layer, the topology B consists of one BL layer and one TABL
layer, and the topology C consists of two BL layer and one
TABL layer. In these architectures, the last layer is a TABL
layer and all other layers are BL layers. We evaluated MTABL
networks with a varying number of attention heads, from 2 to
5.

Table I reports the corresponding experiment results for
network topologies with concatenation as the attention ag-
gregation strategy to combine attention mechanisms’ outputs.
Due to the stochastic nature of the optimizer, we report the
mean and standard deviation between four independent runs.
The following metrics were used to measure the performance
of each model: accuracy, precision, recall, and F1-Score.
Since the FI-2010 dataset has a skewed distribution of labels
with the majority of samples having the stationary label,
the average F1 score, which reflects the trade-off between
precision and recall, is used as the main metric to compare
between models. The column “Layer” indicates which type of
output layer was used in the network architecture. The number
of attention heads used in each MTABL layer is indicated by
the last number in the notation, that is (MTABL-3) denotes
a MTABL layer using three attention heads. The whole row
corresponds to the model with the best performance for each
network topology based on F1-Score is highlighted in bold-
face. The results show improved performances of the multi-
head attention configuration in for all network topologies. This
suggests that using multiple attentions can help the output
layer to detect and focus on crucial elements of data more
accurately and improve the prediction performance.

The interpretation of the results from Table I that correspond
to network topologies that use concatenation to combine the
outputs of all attention heads in each layer is straightforward.
MTABL show the major improvements over the original TABL
with five attention heads. In the first instance, this can be
interpreted as a considerable (K = 5) amount of relevant
attention that is neglected in TABL that MTABL’s increased
number of attention layers captures. When additional BL lay-
ers are considered in topologies B and C the best performances
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TABLE I
PERFORMANCES OF MULTI-HEAD ATTENTION MODELS USING CONCATENATION (MTABL-C) (MEAN ± STD.)

Topology Layer Accuracy (%) Precision (%) Recall (%) F1-Score (%)
TABL 67.21±0.045 53.76±0.039 55.47±0.015 54.25±0.03

MTABL-C-2 69.78±0.029 56.64±0.029 59.58±0.026 57.81±0.029
MTABL-C-3 72.45±0.009 59.03±0.009 60.41±0.001 59.66±0.005
MTABL-C-4 72.30±0.007 59.25±0.007 61.60±0.005 60.28±0.006

A

MTABL-C-5 72.57±0.003 59.63±0.003 62.68±0.005 60.90±0.004
TABL 78.56±0.002 67.55±0.003 71.07±0.004 69.10±0.002

MTABL-C-2 77.68±0.004 66.44±0.004 70.56±0.007 68.18±0.004
MTABL-C-3 78.13±0.007 67.04±0.009 71.39±0.004 68.89±0.007
MTABL-C-4 77.63±0.005 66.48±0.006 70.89±0.003 68.35±0.005

B

MTABL-C-5 78.22±0.012 67.4±0.017 71.52±0.004 69.16±0.012
TABL 83.52±0.009 75.12±0.013 77.02±0.006 76.01±0.009

MTABL-C-2 83.69±0.005 75.21±0.008 77.74±0.004 76.39±0.006
MTABL-C-3 81.64±0.014 72.16±0.022 75.17±0.015 73.54±0.019
MTABL-C-4 83.71±0.01 75.37±0.015 77.63±0.006 76.42±0.011

C

MTABL-C-5 82.63±0.004 73.66±0.005 76.93±0.008 75.16±0.006

are achieved under K = 4 and K = 5 respectively but the
improvement is minor. This can indicate that the five attention
heads in topology A the attention-relevant information are
highly useful to improve the prediction performance. On the
other hand, in topologies B and C when additional BL layers
are introduced, the best MTABL performance is still observed
with a higher number of layers (4 and 5) but the improvement
is not as much as topology A. This shows that there is little
temporal attention discarded in TABL that MTABL captures.

V. CONCLUSION

In this paper, a new neural layer based on the structure of
TABL and the idea of multi-head attention is proposed for
financial time-series analysis. We proposed a formulation of
the TABL layer that utilizes multiple attention units to focus on
different temporal importances. Our MTABL design stands out
as a suitable neural layer for addressing numerous forecasting
problems over a wide class of time-series characterized by
complex and time-varying dynamics.

Extensive experiments in forecasting the direction of mid-
price movements using limit-order book data show that the
proposed MTABL design is indeed capable of unveiling addi-
tional layers of relevant predictive significance lodged in the
data. The improved MTABL performance is generally achieved
for different combination schemes of the attention heads’
outputs, for a different number of attention heads, and under
different network topologies.
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