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Abstract—The switching autoregressive model is a flexible
model for signals generated by non-stationary processes. Unfor-
tunately, evaluation of the exact posterior distributions of the
latent variables for a switching autoregressive model is analyti-
cally intractable, and this limits the applicability of switching
autoregressive models in practical signal processing tasks. In
this paper we present a message passing-based approach for
computing approximate posterior distributions in the switching
autoregressive model. Our solution tracks approximate posterior
distributions in a modular way and easily extends to more
complicated model variations. The proposed message passing
algorithm is verified and validated on synthetic and acoustic data
sets respectively.

Index Terms—Message Passing, State Estimation, Switching
Autoregressive Models, Variational Inference

I. INTRODUCTION

Autoregressive (AR) models have been widely used to
represent acoustic signals, such as speech signals [1], [2] or
background noise [3], [4]. In order to take into account non-
stationary behaviour, switching autoregressive (SWAR) models
have been developed as an extension to standard AR models
[5], [6, Ch. 24.6]. These models allow for representing individ-
ual phonemes in speech or different types of background noise.
Besides, SWAR models have been successfully applied to
other tasks, including the detection of influenza epidemics [7],
heart sound segmentation [8] and wind time series processing
[9]. This extension from the original AR model may lead
to increasing model performance, but also leads to a more
complicated inference procedure.

Technically, the SWAR model only differs from the regular
AR model through its prior distributions on the parameters,
as will be specified in detail in Section II. Instead of deriving
all update equations for state and parameter estimation in this
specific model by hand, as was done for the simplified model
in [6, Ch. 24.6], we automate inference by message passing in
(Forney-style) factor graph (FFG) representation of the model
[10], [11]. The local message update equations have been pre-
derived for the constituent factor nodes of the SwWAR model
in earlier works [12, Apps. 2 & 9], [13], which allows us to
automatically generate an inference algorithm for the SwWAR
model.

This paper describes a message passing-based approach
for performing probabilistic inference in the switching auto-
regressive model. We make the following contributions:
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o A switching auto-regressive model is specified where
both states and parameters are treated as latent variables
in Section II.

o The basic SWAR model is extended with temporal dy-
namics for the active switching states evolving over a
different time scale in Section II.

o« We state our problem definition as an inference task
on the SWAR model in Section III, and show how this
inference task can be realized through message passing-
based inference in an FFG in Section IV.

o We demonstrate our proposed methodology through a set
of verification and validation experiments in Section V.

Finally, we discuss the obtained results and conclude the paper
in Section VI

II. MODEL SPECIFICATION

Let y; = [ys, ..., y—n+1]" € RY, denote a vector of the
N latest observations at time ¢. The likelihood function of an
SwAR model is defined as

ye ~ N (08 ye—1.m) ey
where we use N (i, A) to denote a Gaussian distribution with
mean p and precision A. 0, = [le,...,QNk.]T € RY and

Y& € Rso denote the autoregressive coefficients and process
noise precision of the N'"-order SWAR model, respectively.

The vector of previous observations y;_; is updated with
the next observation y; according to [14] by

Yy = SYi—1 +cy; 2

where

S 4 |:I]\?1 8], c=[1,0,...

We assume the parameters of SWAR to be stationary over
longer segments of time and therefore index them with the
slower-evolving switching state index £ = 1,..., K, related
to t as k = [t/W]. Here, [-] denotes the ceiling function that
returns the largest integer smaller or equal than its argument,
while W is the window length. The above equation makes
sure that & is intuitively aligned with segments of length W,
i.e. t € [1,W] corresponds to k = 1. To denote the start and
end indices of the time segment corresponding to switching
state index k, we define t~ = (k — 1)W + 1 and t* = kW
as an implicit function of k, respectively. Implicitly we also
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Fig. 1. A Forney-style factor graph of a single switching state time slice of the switching autoregressive model. Each switching state time segment indexed
over k (blue part) is connected to a total of W repetitions of the part of the model indexed over t (yellow part). The GMM and I'MM nodes denote the
Gaussian and Gamma mixture nodes respectively. The Sc node represents (2). Horizontal dots indicate the extension of the graph in the same way to the other
time steps. Vertical dots encapsulate mixture components from 1 to L. The equality node = imposes a constraint on the marginals of variables associated
with adjacent edges to be equal. Propagating messages backwards from future time steps results in an inference smoothing algorithm, whereas if we only

propagate messages forward in time, a filtering algorithm results.

constrain (1) to only be valid for matching time indices, i.e.
fort=¢",t" +1,...,t".

The AR likelihood function of (1) is extended with the
mixture models

L
O ~ [TV (pa, M)

=1

L
e~ [T (B @)
=1

to form a SWAR model with L switching states or contexts.
Here T'(av, 8) denotes the Gamma distribution with shape and
rate parameters « and [, respectively. The variable ¢, =
[c1k,---,crk] " denotes a 1-of-L binary vector with elements
cr € {0,1}, constrained by ), ¢z = 1. The switching
behaviour is achieved by modeling the temporal dynamics as

¢, ~ Cat(Tep—1), 5)

where Cat(m) denotes a categorical distribution with event
probabilities 7v. We model the individual columns of the
transition matrix T by a Dirichlet distribution Dir(¢) as

Tl:L,j ~ Dlr(Cj)v (6)

where (; denotes the vector of concentration parameters
corresponding to the j" column of T. The switching state
is initialized by a categorical distribution as

L
such that » mo =1, (7)

L
¢ ~ Cat(mg) = HTrlcé(’
=1 I=1

where the individual event probabilities can be chosen as 7,9 =
1/L if the initial switching state is unknown. Additionally, we

assign prior probability distributions to the hyperparameters of
the SWAR model in (4):

pi ~ N(mug, vio) Ay ~ W(Vo, no)

o ~T(a§ b B~ T(af b))
with W(-, -) denoting the Wishart distribution.

The SWAR model described by (1)-(8) can be represented

by a Forney-style Factor Graph (FFG) as depicted in Figure 1.
An FFG is an undirected graph where nodes represent factors
of a global function and edges represent variables [10]. In
an FFG, an edge is connected to a node if and only if the
factor corresponding to the node is a function of the variable
corresponding to the edge. If the variable is shared between
more than 2 factors, we can make use of equality nodes of
type 6(x — a’)6(x — 2’') that constrain the beliefs over two
“copy variables” x’ and z” to be equal to the belief over x
[15]. In an FFG, factors are drawn as square open nodes and
observations or fixed variables are represented by small black
squares, whose factors can be regarded as Dirac delta functions
centered on the observed value. For a detailed explanation of
the FFG formalism, we refer to [11], [16], [17].

®)

III. PROBLEM STATEMENT

Given an SWAR model and a collection of observations vy,
we are interested in tracking the marginal distributions of the
model’s latent variables. Computation of these posterior distri-
butions requires the integration and summation of the model
specified by (1)-(6) with respect to all nuisance variables.
These computations do not yield any analytical solutions and
therefore lead to intractable probabilistic inference. This paper
addresses the problem of computing approximate marginal
distributions in the SWAR model.
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IV. METHODS

In this section we describe how probabilistic inference can
be realized in the SWAR model.

A. Variational message passing

The factorized structure of the SwWAR model allows for
the distributed calculation of the posterior distributions of its
variables through a set of smaller local computations called
messages. Intractability in these computations prevents us
from performing exact message passing-based inference, also
known as belief propagation [18] or the sum-product algorithm
[19]. Consequently we result to variational message passing
(VMP) [20], [21].

To illustrate this, consider the probabilistic model p(y, z),
with observations y and latent variables z. As the computation
of the exact posterior p(z|y) is intractable, we resort to
variational inference, where we approximate the true posterior
distribution by the tractable approximate posterior distribution
q(z) =~ p(z|y). Probabilistic inference then concerns the
minimization of the variational free energy (VFE) functional

Flg] = Dxlg(2)[lp(]y)] — np(y), ©)

where Dyp, is the Kullback-Leibler divergence. To enable
efficient optimisation of the VFE for the SWAR model we
assume an additional factorisation on ¢(z),

9(2) = [ ¢a(za) , (10)

where z, refers to a set of node-bound local variables (one
or many) such that U,z, = z. VMP concerns the iterative
updating of marginals as ¢;(2;) o 7(z;) - U(z;), where 7(z;)
and (z;) are forward and backward variational messages on
edge z;. The outgoing variational message 7(z;) on edge z;
from a factor f(z), with incoming marginals ¢;(z;) for ¢ # 7,
can be derived as [21]

V(zj) eXp/HC]i(Zi)f(z)dz\j'

i#j

(1)

The approximate marginals g;(z;) and variational messages
U(zj) and (z;) are iteratively updated until the VFE con-
verges.

B. Expectation maximization

As a further specification of the VMP procedure, we can
constrain the form of approximate marginals to ¢;(z;) =
d(z; — ;). By selecting Z; through the optimization problem

2; = argmax J(z;)V(z;),
2

(12)

we perform a local expectation maximization procedure
through message passing [17], [22]. This constraint is enforced
for the variables «; in the Gamma mixture node [23].

Generated SWAR process
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Fig. 2. Example of a generated SWAR signal. The constituent AR processes
have been denoted by different colors.

C. Inference in the switching autoregressive model

Inference in the SwAR model of (1)-(8) is performed
through a hybrid message passing scheme that includes both
sum-product and variational messages. By enforcing different
variational constraints on the approximate posterior distribu-
tions of the variables in the model, we can obtain different
local inference procedures [17]. The graph in Figure 1 submits
to a combination of sum-product message passing, (structured)
VMP and expectation maximization. Around all deterministic
nodes sum-product message passing is performed. Expectation
maximization is performed on the edges corresponding to the
variables «; and all other variables submit to (structured) VMP.
The message passing update rules for all nodes have already
been derived in previous works. Update rules corresponding
to the mixture nodes of (4) can be found in [12, Table A2] for
the Gaussian mixture node and [13, Table I] for the Gamma
mixture node. [12, Table A5] summarizes the update rules for
the nodes corresponding to the switching state transition of
(5). The update rules corresponding to the Gaussian factor in
(1) are summarized in [12, Table Al].

V. EXPERIMENTS

All experiments' have been implemented in the Julia pro-
gramming language [24]. We used the following computer
configuration: Operating system: macOS Big Sur, Processor:
2,7 GHz Quad-Core Intel Core i7, RAM: 16GB.

A. Verification experiments

To verify the proposed inference method, we synthesized
data from 100 SWAR generative models with the likelihood
in (1) with AR order M = 2 and L = 2 switching states. To
ensure the stationarity of the generated processes we resample
unstable process configurations. An example of a generated
SwAR signal is shown in Figure 4. We used uninformative
priors for the transition matrix T and initial switching state cg.
As for the rest of the model parameters, we used informative
priors, i.e., the means of the prior distributions are centered at

TAll experiments are available at https://github.com/biaslab/swar.
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an e-area (¢ > 0, €2 ~ 0) of the means of the corresponding
generative distributions. We motivate the usage of informative
priors by the non-convexity of the mean-field assumption of
our approximate posterior distribution around mixture nodes.
This induces multiple solutions for our inference task [25,
Ch. 5]. Following the problem definition task in Section III,
we seek to obtain the quantities ¢(O0x|y), ¢(Vk|y), q(ckly),
q(Tly) and q(uly), a(Zily), q(culy), q(Bily) for every
I = 1,...,L. The notation ¢(-|y) refers to the marginal
distribution after all observations y.

Additionally, we want to verify the convergence of the
proposed methodology by monitoring the VFE. The inference
results are presented in Figures 3 and 4. We evaluate the
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Fig. 3. Inference results on the synthetic dataset. The dashed lines corre-
spond to the expected values of the posterior estimates. The shaded regions
correspond to the inferred standard deviation of the approximate posterior
distributions around the estimated mean. The solid blue lines correspond to
the true underlying values of the latent parameters in the generative processes.
(Top) Inference results for the AR coefficients obtained from the joint marginal
distribution q(0y|y). (Bottom) Inferred approximate posterior distributions of
the precision variables q(vk|y).

performance of the inference for the switching states procedure
by computing a categorical accuracy metric, defined as

tp +tn
R-K’

acc =

13)

where tp, tn are the number of true positive and true negative
values, respectively. R corresponds to the number of total
synthetic data sets, which in this experiment is set to & = 100.
In this experiment, we achieved a categorical accuracy of
acc = 0.84.
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Fig. 4. Inference results on the synthetic dataset. (Left) Evolution of the

variational free energy averaged over all generated data sets. (Right) True
and inferred evolution of the switching state per frame. Each frame consists
of W = 100 data points. Circles denote the active switching states that
were used to generate the frame. Crosses denote the mode of the inferred of
switching states.
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Fig. 5. Inference results for the audio signal. The acoustic signal is represented
by a solid black line. Windows of 15000 samples are separated by red solid
lines. The green vertical lines correspond to the locations where the underlying
acoustic signal changes. The first frame was identified as a train sound (blue
region). The two frames in the middle signify a bar sound (red region). The
last two frames were classified as a train sound.

B. Validation experiments

To validate the proposed inference procedure, we used 8
seconds of an audio signal, composed of the concatenation of
sounds from two different acoustic environments: a train sta-
tion and a bar. Specifically, we have ~ 2.6 sec of train sound,
followed by ~ 2.6 sec of bar noise, ending with another train
station noise of ~ 2.6 sec. The sampling frequency was 8 kHz
and the audio file is available at https://github.com/biaslab/
swar/data/. The task is to identify the states of each window,
or to classify which acoustic environment is present in the
window. In our experiment, we set a maximum window size
to 15000 samples (or 1.875 seconds). In this way, our signal
breaks into K = 5 windows, where the 5th window contains
4000 samples. The choice of 15000 reflects our beliefs about
the temporal structure of the signal. In other words, we assume
that the switches in the acoustic signal happens at the seconds-
level, not at the milliseconds level. We used informative
priors for the AR coefficients and precision parameters of the
SwAR model. These priors were obtained from performing
parameter estimation in the autoregressive model [23]. We
have little prior information about the initial state of the audio
signal. Thus, we assigned vague (uninformative) priors for
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the initial state ¢y and transition matrix T. We present the
inference result in Figure 5. Although some frames contain
overlapping acoustic signals due to current segmentation, good
classification results were achieved through the automated
message passing-based inference procedure.

VI. DISCUSSION AND CONCLUSION

We have introduced an SwWAR model that includes efficient
joint variational tracking of states, parameters, and variational
free energy. In this work, we have demonstrated just one way
of approximating the posterior distribution of «;. In particular,
we employed a local expectation maximization procedure to
estimate the «; parameter. Although this approach delivers
reasonable estimates, it is not suited for online inference
scenarios. For these scenarios, one could resort to the moment
matching procedure as proposed in [13].

This paper introduced an SWAR model composed from a
Gaussian and Gamma mixture model. Owing to the modularity
of the factor graph approach, this model can be easily extended
and its inference algorithm can be automatically generated
based on efforts from previous works. The correctness of the
proposed message passing-based inference has been verified
on multiple datasets synthesized from the SwAR model.
Finally, we demonstrated the convergence of the inference
procedure through the minimization of VFE. The proposed
model can be easily extended to a latent SWAR model using
the update rules of [23], where instead of directly observing
y; we observe a noisy variable z; ~ N (y;,7y). We aim at
using SWAR model as a module in more complex hierarchical
systems in future work.
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