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Abstract—Learning from expert demonstrations effectively
reduces the number of interactions required to train a policy
between the learning agent and its environment. Where agent-
environment interactions can be costly, reinforcement learning is
critical, and imitation learning suffers significantly from learning
hierarchical policies when the imitative agent encounters an
unobserved state by the expert agent. We propose a probabilistic
incremental imitation learning method that employs a Dynamic
Bayesian Network to encode observed teaching-agent’s behaviors.
The presented model grows and matures based on imitation loss
formulation at a discrete level in the online learning procedure.
The learning agent is trained by using long-term predictions from
the generative learning model to replicate the teacher’s motion
while learning how to choose an appropriate action through new
experiences. Our results affirm that a Dynamic Bayesian optimal
approach provides a principled framework and outperforms
conventional reinforcement learning methods.

Index Terms—Imitation learning, Dynamic Bayesian network,
performance analysis, autonomous tracking, action prediction

I. INTRODUCTION

Imitation learning (IL) is a general method for rapidly
acquiring new skills from an expert agent in order to ac-
celerate policy learning when solving reinforcement learning
(RL) problems [1]. While RL methods rely on uninformed
random exploration to locally improve a policy, IL leverages
prior knowledge about a problem in terms of learning a task
by providing demonstrations performed by an expert. The goal
of IL is to learn a policy that performs expert policy quickly.
Since the expert policy may be sub-optimal for RL, performing
IL is frequently used to provide an efficient warm start to the
RL problem and thus reduce the number of interactions with
the environment [2].

However, since IL is highly reliant on expert demonstra-
tions, the learning agent might fail to reach the goal in an
unseen environment. On the other hand, an agent needs to
perform much exploration to learn proper behavior in RL.
Additionally, RL can suffer from poor scalability, and it can
be challenging to design a reward function that leads RL to
the desired behavior [3]. These problems can be relieved by
performing a policy sequence updated by mimicking the expert
demonstrations to converge on average to the performance of
the expert policy [4], [5]. Integration of both modalities was
shown that this rate is sufficient to make IL more efficient than
solving an RL problem from scratch [2].

Motivated by the above discussion, we propose a framework
for autonomous tracking in a continuous environment that

combines IL with RL. IL is used as a pre-training step
to encode an expert demonstration in a Dynamic Bayesian
Network (DBN) [6] that describes desired behaviors. The
DBN is a probabilistic graphical model (PGM) that employs
graph-based representation to encode various multidimen-
sional random variables and represent causal relationships
among them [7]. Recent studies have shown the utility of
PGMs at factorizing causal relationships between latent states
of multisensory data and encoding semantic relationships
between random variables [8]. Moreover, the work in [9] have
demonstrated how to make inferences on PGMs in a data-
driven way. Usually, those works use stochastic models that
follow a Markovian assumption where an event’s probability
depends on the state previously attained. Due to its hierarchical
nature, DBN can express temporal relationships among high-
level variables capturing abstract semantic information about
the environment and low-level distributions capturing rough
sensory information with their respective evolution through
time. This work employs the discrete information of an expert
probabilistic model enabling the learning-agent to improve its
actions by minimizing the imitation cost that allows avoiding
abnormal states in the future.

II. PROPOSED FRAMEWORK

This section includes two main phases, offline learning and
online learning. In the former, we learn an Expert model (E̊)
encoding dynamical behaviors of a Teacher (T) moving to a
fixed goal (G). In the latter, an incremental IL model is learned
where a Learner (L) attempts to learn sub-optimal behavior by
observing T demonstrations and updates its knowledge while
transiting in a continuous environment to reach G.

A. Offline learning phase

The offline learning process aims to learn E̊ based on
T behavior which can be used as a reference model by L.
E̊ consists of a DBN representing the T dynamics in the
environment and modelling hierarchical relationships between
different variables with their respective evolution through time.
At each time instant t (DBN’s slice), causal relationships
between variables are encoded through inter-slice links. While
causal relationships between variables in subsequent time
instances are encoded through temporal links (see Fig. 1).
The DBN model consists of three levels, the bottom level
depicts the T’s observations represented by ZT

t . The middle
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level illustrates the generalized states (GSs) expressed as
X̃ = {X̃t}t=1,...,t, where X̃t = [Xt, Ẋt]

⊺, Ẋt ∼ Xt−Xt−1

∆t
and ∆t is the sampling time. The top level represents the T’s
discrete states explaining the dynamical transition behaviors
reflected into a semantic discrete space. The observation model

Vocabulary

𝑺𝑻 = {𝒔𝟏
𝑻, 𝒔𝟐

𝑻, … , 𝒔𝑴
𝑻 }

Mean vector

Covariance

GNG
෩𝑿𝒕=𝟏,𝟐,…,𝒕

Generalized

states
Null Force

Filter𝒁𝒕=𝟏,𝟐,…,𝒕

Observations

𝑻𝑴

෨ξ

෩∑

𝑃
(
෨ 𝑋
𝑡𝑇
|𝑆
𝑡𝑇
)

𝑃(𝑆𝑡+1
𝑇 |𝑆𝑡

𝑇)

𝑃( ෨𝑋𝑡+1
𝑇 | ෨𝑋𝑡

𝑇)

𝑆𝑡
𝑇 𝑆𝑡+1

𝑇

𝑃
(
෨𝑋
𝑡+

1
𝑇

|𝑆
𝑡+

1
𝑇

)

෨𝑋𝑡+1
𝑇෨𝑋𝑡

𝑇

𝑃
(𝑍

𝑡𝑇
|
෨ 𝑋
𝑡𝑇
)

𝑃
(𝑍

𝑡+
1

𝑇
|
෨𝑋
𝑡+

1
𝑇

)

𝑍𝑡
𝑇 𝑍𝑡+1

𝑇

Slice at t Slice at t+1

Fig. 1: Proposed DBN structure. Inter-slice links are depicted
in orange and temporal-links are colored in yellow.

that maps X̃T
t to ZT

t is defined as:

ZT
t = HX̃T

t + vt, (1)

where H=[Id 0d,d] is the observation matrix that parametrize
the observation model and vt is the Gaussian measurement
noise, such that, vt ∼ N (0,R). We assume that the dynamics
of GSs evolve according to a static equilibrium assumption
described as:

X̃T
t = AX̃T

t−1 + wt, (2)

where A ∈ Rd×d is the dynamic matrix and wt is the process
noise, such that wt ∼ N (0,Q). This implies a Null Force
Filter (NFF) that can be interpreted as an unmotivated Kalman
Filter, it uses the innovations obtained by observing a sequence
ZT
t to estimate the next state that describes the agent’s motion

in the GS space. The innovations can be seen as mismatches
between observations and predictions as:

υ̇ = H−1
(
ZT
t −HX̃T

t

)
, (3)

The couples (X̃T , υ̇) are defined as generalized errors (GEs)
that can be clustered in an unsupervised manner using the
Growing Neural Gas with utility measurement (GNG-U) [10].
GNG-U outputs a set ST of discrete variables (i.e., clusters)
representing the discrete level of the DBN structure and
forming the so called Vocabulary. Each sm ∈ ST is assumed
to follow a multivariate Gaussian distribution, such that sm ∼
N (ξ̃m, Σ̃m), where ξ̃m = [ξm, ξ̇m]⊺ is the GS centroid of
the m-th cluster and Σm is its covariance matrix. The DBN
discrete-level represents the activated cluster (st ∈ ST ) at
each time instant. Our work assumes that the learner uses
the discrete information in ST as a flashback−memory
(M̊) that guides the RL procedure. The probabilistic law
that regulates transition among different local forces captured
by different clusters can be estimated in different ways (e.g.

frequentist or geometrical) and encoded in a Transition Matrix
(TM) that estimates the transition probabilities P(st+1|st).

B. Online learning phase

In this phase, we propose an online incremental IL model
(OIL) that allows L to learn how to improve the actions
and reach G by minimizing imitation loss. M̊ can be used
during the online learning phase providing suitable predictions
and learning policies to teach the best set of actions (A)
that L needs to accomplish its task. Therefore, M̊ leads the
active states during new experiences that describes how the
agent can act in the environment to change sensory signals
in order to match internal predictions of E̊ and thus to
imitate efficiently by decreasing the abnormalities. This work
suggests training L through the inclusion of M̊ representing
T’s behaviors, which postulate that L optimizes its motions
based on M̊’s predictions over time. RL can formalize the
underlying decision-making as an MDP, a model of a discrete-
time process wherein an agent’s actions may stochastically
influence its environment. The proposed approach endows L
with the capability of estimating the imitation cost, whereby
minimizing the imitation cost (i.e., maximizing rewards in
RL) ensures an equilibrium between L and its surrounding.
Accordingly, lets define L’s state and action at a given time
instant t as sLt , aLt , respectively. We hypothesize that the L
uses a probabilistic discrete representation ST that encodes
relevant information about the observed T’s behaviors (i.e.,
M̊) instead of exploiting explicitly from T (which rejects the
idea of a buffer that replays previously observed T’s states
X̃

T
). We aim at, i) modeling a dynamic multiple reward

function by considering the abnormalities between L and M̊
at each t to ii) regulate the L’s actions in the online IL stage.

1) Imitation cost: Two policies are considered, the action-
based and the state-based to evaluate L’s loss using the
activated cluster (̊s) from M̊, where s̊ is the closest E̊’s cluster
to the current L’s state (sLt ) calculated by Euclidean distance.
Action-based policy. Minimizing the divergence between the
current L’s action and the mean action of the activated cluster
(̊s) such that:

Ṗt = dM
(
ga(̊st), a

L
t

)
, (4)

where dM(X, x) is the Mahalanobis distance between a dis-
tribution X and a point x, ga(·) is a function that extracts the
action-distribution from a GS-distribution, such that ga(̊st) ∼
N (ξ̃t, Σ̃a

t ) and Σa
t is the action’s covariance information.

s̊t ∼ N (ξ̃t, Σ̃a
t ), which can be obtained according to:

s̊t = argmin
sm

∥st − ξ̃m∥2. (5)

State-based policy. Minimizing the distinction between the
current L’s state (sLt ) (produced by the last action aLt−1)
and the predicted state from the activated cluster (̊st|t−1).
The discrete probability p(st|st−1) from M̊ is employed to
estimate s̊t|t−1. The term s̊t−1, required in p(̊st |̊st−1), is
calculated based on (5). The state-based policy can be written
as:

P̈t = dM
(
gs(̊st|t−1), s

L
t

)
, (6)
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where gs(·) is a function that extracts the state-distribution
from a GS-distribution, such that gs(̊s) ∼ N (ξ̃t, Σ̃s

t ). Σ
s
t is

the state’s covariance information. The policies indicate the
imitation loss regarding the aL and sL at each t in a continuous
range [0, 1] that describes the abnormality value. Hence, by
minimizing the global imitation loss (R̂t), the learning model
can maximize the learning rate and gain a high reward. R̂t

takes into account the mean value of both policies as:

R̂t = E(Ṗt, P̈t), (7)

2) Action’s magnitude: At each t, the aLt consists of a unit
vector displacement (among a discrete set of unit vectors A)
multiplied by a constant Ψ, which is calculated as the norm of
(̊st) such as aLt = ΨA, where A = {a1, a2, . . . , a8} is a set of
eight cardinal and ordinal directions used by L and Ψ = ∥̊st∥.
The selection of aLt ∈ A is based on ϵ-greedy ∈ [0, 1], which
decays over the episodes. In case of exploration, aLt tends to
be selected at random to explore more new positions that can
be exploited in the future. In exploiting, actions are selected
as follow:

aLt = argmax
a

(Q(st, a)). (8)

L records the experienced states (s+t ) along with the performed
actions (at ∈ A) in a incremental function Q(s, a) and the
new states are saved in set SQ that grows incrementally as
experiences are observed over time:

Q =


P(aL1 |sL1 ) . . . P(aL1 |s+) . . .
P(aL2 |sL1 ) . . . P(aL2 |s+) . . .

...
. . .

...
...

P(aLN|sL1 ) . . . P(aEN|s+) . . .

 , (9)

where
∑N=8

n=1 P(a
L
n|s+m) = 1 such that s+m are the new explored

states. In order to weigh up the trained model than E̊, L
clusters all the recorded pairs [s+t , at] by employing GNG.
The latter outputs a set of clusters representing the new states
(Ŝ) and the corresponded mean actions (ȧ) which are added
to the updated Q-table (Q∗) defined as:

Q∗ =


P(ȧ1|Ŝ1) (ȧ1|Ŝ2) . . . P(ȧ1|ŜM )

P(ȧ2|Ŝ1) (ȧ2|Ŝ2) . . . P(ȧ2|ŜM )
...

...
. . .

...
P(ȧN |Ŝ1) (ȧN |Ŝ2) . . . P(ȧN |ŜM )

 . (10)

L adapts the action selection procedure by updating the Q-
table defined in (9) based on the imitation cost policies at
each t. Since the provided Q is a probabilistic table, updating
Q value can be rewritten in a probabilistic form as follows:

Q = (1−η)P(at−1|st−1)+η
[
(1−R̂t)+γmax

at
P(at|st)

]
,

(11)

where η is the learning rate which controls how quickly the
learning agent adopts to the explorations imposed by the
environment, (1− R̂t) is the normalized reward measurement
with a range in [0, 1], and γ is a discount factor.

III. EXPERIMENTAL EVALUATION

A. Experimental setup

The proposed framework is validated using a simulated
dataset consisting of sensorial information collected by T
where it attempts to reach G from different starting points.
T moves based on the velocity field model proposed in [11],
that G⃗(r) =

(
β − λe

−r2
ψ

)
r̂, where r is the distance to G,

λ ≤ β and r̂ is a unit vector pointing at G. The T positional
information and the corresponding velocities are obtained from
the odometry module. Sensory data representing positional
information from these experiments are used to learn the
expert trajectories encoded in E̊ that L uses to imitate T.

B. Offline learning phase

This section shows the process of learning E̊ from T data.
The NFF is used as an initial filter employed on the collocated
data during tracking G. NFF outputs the GEs defined in (3)
which can be clustered using GNG that outputs a set of discrete
clusters representing the discrete regions of the trajectories
generated by T. Fig. 2-(a)-(b)-(c)-(d) illustrate the clusters and
the corresponding TM.

(a) (b)

(c) (d)

Fig. 2: Learning E̊. a) clustering of GEs, b) mean velocity of
each cluster, c) clusters’ relationship, and (d) TM.

C. Online learning phase

During the online phase, L modifies its actions based on the
learned clusters during offline phase. Q-table records the L’s
observations and the corresponding actions as defined in (9).
The experiments are done in a simulated environment. For
having a fair comparative evaluation, all the experiments are
considered with fixed steps. We run each algorithm over 4k
episodes by different start positions to learn how to track G
through learning the imitation policies. All experiments used
the same Stop condition, which is met when: i) a minimum
distance to target is accomplished (success) ii) a maximum
time in the environment is reached (lost) or, iii) the agent
goes out of boundary (outside). We evaluate the performance
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of the proposed method and compare it with three learning
algorithms, namely, the general cumulative reward-based Q-
learning, inverse reinforcement learning (IRL), self learning
(SL) in RL context (distance-based evaluation).

1) Performance evaluation: Action selection procedure has
a big impact on the L’s effort to reach the targeted G. A good
policy requires fewer actions and in parallel less time to finish
the mission. Fig. 3-(a) shows the number of taken actions
by L for each episode using different methods. It describes
the presented approach (OIL) makes less actions compared
to other methods. This can be explained that evaluating L’s
movement using E̊ can improve the actions that lead the agent
to the desired next state. L adopting the proposed method has
higher successful trajectories than SL, Q-learning and IRL as
depicted in Fig. 3-(b). Our approach uses a threshold ρ to
initialize learning of new explored sL in Q-table (see (9)).
Since ρ has a great impact on the Q-function’s complexity,

(a)

(b)

Fig. 3: Learner performance. a) The number of taken action
by L, and b) The success rate to reach G.

we train L with different ρ values, depending on the distance
between the current state sLt and the set of recorded states (SQ)
in Q-table. By considering the success rate and the required
execution time obtained by each ρ value, we select the suitable
value as shown in Table I. ρ = 1 and ρ = 3 have almost the
same success rate but the required time by ρ = 3 is more
optimal than ρ = 1. Fig. 4 demonstrates how modifying the
actions can reduce the exploration and minimize the imitation
cost resulting in a high learning rate during the training phase.

TABLE I: Training the learning model with different ρ values.
The selected threshold is ρ = 3.

ρ 1 1.5 2 2.5 3 3.5 4 4.5 5
success(%) 96.74 95.99 96.11 96.04 96.52 94.87 93.01 91.56 88.93

time(s) 110.49 93.71 102.02 99.89 90.24 97.83 100.04 109.33 114.26

2) Learning cost evaluation: Two main factors affect R̂
(see (7)), the action difference at time t (see (4)) and the
state divergence after performing at by L (see (6)). Fig. 5
illustrates the imitation loss in both policy Ṗ where L is under
control of action selection at each t, and policy P̈ which by

pr
ob

ab
ilit

y

training epochs 

Learning rate

Exploration rate

Imitation cost

Fig. 4: Presenting the exploration and learning rates after each
training quarter and their impact on the imitation cost.

improving aLt leads to minimizing the divergence between
prediction and evidence. Further, Fig. 5 shows that R̂ drops
down capably in less than 2k training episodes, and after 3k
episodes, its value tends to stable below 0.1, reaching about
0.039. Therefore, L learns to maximize the likelihood with E̊.
Fig. 6-(a)-(b) presents the performance of the proposed method

Fig. 5: Imitation loss measurement by three imitation policies.

during training and testing, respectively, in terms of success,
lost, and going outside (explained in III-C). Also, Fig. 6-(a)-
(b) provide a comparison with other learning methods. It is
demonstrated that the proposed method (OIL) outperforms
others in both training and testing stage, which is attributed
to the effectiveness of motion prediction while dealing with
abnormalities that improve the success rate. Additionally,
during testing, results showed that by 4k training episodes,
L could move in a continuous environment to effectively
reach G whereas other methods still have a high failure
rate. As discussed in II-B.2, L clusters all observed states

success

lost

outside

(a)

success

lost

outside

(b)

Fig. 6: Results after 4k training episodes. a) Training results,
and b) Testing results. In both stages OIL has higher success
than other methods.

and the corresponding performed actions. The recorded pairs
are clustered for two reasons: to calculate the mean action
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value of the corresponding clusters to have comparable data
with E̊ and avoid looking in too many states in the Q-
table. Fig. 7-(a)-(b) depict the Q∗ clusters (see (10)) and
the corresponding TM. Comparing sub-figures (Fig. 2-(d) and

Fixed goal

Learner positions

Learner actions

(a) (b)

Fig. 7: Discrete state-action representation from global imita-
tion policy R̂ (a), and the corresponding TM (b).

Fig. 7-(b)) show that L has an expanded TM than E̊ after
exploring and learning new states, allowing L to predict better
and select desired actions. Under probabilistic inference, such
an incremental learning process endows L with the capability
of avoiding abnormal states. Meanwhile, to evaluate the effect
of each imitation strategies (Ṗ and P̈ ), L is trained with
each policy individually. Fig. 8-(a)-(b) demonstrate the learned
clusters through each policy. Comparing Fig. 7-(a) with Fig. 8-
(a)-(b) shows how applying both policies in parallel (R̂)
generates the most efficient training. In testing stage, three

Fixed goal

Learner positions

Learner actions

(a)

Fixed goal

Learner positions

Learner actions

(b)

Fig. 8: Discrete state-action representation from the action-
based policy Ṗ (a), and the state-based policy P̈ (b).

Q∗-tables obtained with R̂, Ṗ and P̈ are employed with
ϵ-greedy = 0 to generate 300 trajectories (from new start
positions) that are compared with the T’s behavior. We use two
distance measurements to compare trajectories from testing the
provided Q∗-tables with the T’s behaviors: Spatio-Temporal
Euclidean Distance (STED) [12] and Symmetrized Segment-
Path Distance (SSPD) [13]. STED uses temporal information
by comparing trajectories point to point. SSPD is a shape-
based distance that compares trajectories as a whole. Table
II shows the mean value of distance measurements between
test trajectories (over 300 starting points) of different imitation
policies and T’s behaviors. Furthermore, Table II presents the
quantitative results from testing the trained models by R̂, Ṗ
and P̈ in terms of success, lost, and going outside (explained
in III-C).

IV. CONCLUSION

We have proposed an incremental IL method where a
learning-agent does not require to repeat the teaching-agent’s

TABLE II: Testing results after 4k training episodes.

imitation policy success (%) lost (%) outside (%) STED SSPD
trained by R̂ 97.22 1.05 1.73 0.551 0.164
trained by Ṗ 90.76 4.23 5.01 1.105 0.362
trained by P̈ 89.01 4.96 6.03 1.359 0.411

behaviors explicitly. It learns by watching the teaching-agent
and developing a probabilistic model of the critical aspects
of its observations. Therefore, the learner is not limited to
recalling exact observations of the behaviors but employs a
probabilistic model as a M̊ for guiding an RL method that
allows the learning-agent to learn a previously observed task
on its own. Future work concentrates on applying the GNG
on the learning model during the online phase to update the
transition matrix in real-time and improve predictive abilities
at both discrete and continuous levels that enrich the learning-
agent with the capability to explain abnormal situations and
how they can be avoided in the future.

REFERENCES

[1] H. Le, N. Jiang, A. Agarwal, M. Dudik, Y. Yue, and H. Daumé III,
“Hierarchical imitation and reinforcement learning,” in International
conference on machine learning. PMLR, 2018, pp. 2917–2926.

[2] C.-A. Cheng, X. Yan, N. Wagener, and B. Boots, “Fast policy learning
through imitation and reinforcement,” arXiv preprint arXiv:1805.10413,
2018.

[3] K. Judah, A. Fern, P. Tadepalli, and R. Goetschalckx, “Imitation learning
with demonstrations and shaping rewards,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 28, no. 1, 2014.

[4] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, 2011, pp.
627–635.

[5] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,” in
ICML, vol. 97. Citeseer, 1997, pp. 12–20.

[6] Z. Ghahramani, “Learning dynamic bayesian networks,” in International
School on Neural Networks, Initiated by IIASS and EMFCSC. Springer,
1997, pp. 168–197.

[7] L. E. Sucar, “Probabilistic graphical models,” Advances in Computer
Vision and Pattern Recognition. London: Springer London. doi, vol. 10,
pp. 978–1, 2015.

[8] S. Benferhat, P. Leray, and K. Tabia, “Belief graphical models for
uncertainty representation and reasoning,” A Guided Tour of Artificial
Intelligence Research: Volume II: AI Algorithms, pp. 209–246, 2020.

[9] M. Baydoun, D. Campo, V. Sanguineti, L. Marcenaro, A. Cavallaro, and
C. Regazzoni, “Learning switching models for abnormality detection
for autonomous driving,” in 2018 21st International Conference on
Information Fusion (FUSION), July 2018, pp. 2606–2613.

[10] H. Iqbal, D. Campo, M. Baydoun, L. Marcenaro, D. M. Gomez, and
C. Regazzoni, “Clustering optimization for abnormality detection in
semi-autonomous systems,” in 1st International Workshop on Multi-
modal Understanding and Learning for Embodied Applications, 2019,
pp. 33–41.

[11] D. Campo, A. Betancourt, L. Marcenaro, and C. Regazzoni, “Static
force field representation of environments based on agents’ nonlinear
motions,” EURASIP Journal on Advances in Signal Processing, vol.
2017, no. 1, p. 13, 2017.

[12] M. Nanni and D. Pedreschi, “Time-focused clustering of trajectories of
moving objects,” Journal of Intelligent Information Systems, vol. 27,
no. 3, pp. 267–289, 2006.

[13] P. C. Besse, B. Guillouet, J.-M. Loubes, and F. Royer, “Review and
perspective for distance-based clustering of vehicle trajectories,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 11, pp.
3306–3317, 2016.

1506


