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Abstract—Ultra-wideband (UWB) radio localization
is a popular solution for indoor navigation. The time
delay of radio signals between agents and anchors
enables the inference of the agents’ positions. The
measurement of the time difference of arrival (TDoA)
of these radio signals provides a scalable way to achieve
localization. Due to factors like the antenna and room
geometry TDoA measurements tend to contain a bias
error. We present a probabilistic model-based approach
to solve the TDoA localization problem with bias
correction. By using stochastic variational Gaussian
process (SVGP) regression with a tailored kernel we
can exploit the problem structure and efficiently predict
the measurement bias. Then we correct this bias by
incorporating the Gaussian process (GP) predictions to
a factor graph based localization scheme. The method
is tested on data recorded from a quadrocopter and
validated against an optical marker-based tracking. The
framework manages to infer the location of the drone
accurately and the proposed bias correction reduces
localization errors significantly.

I. INTRODUCTION

Localization is an important task for many applications.
On a large scale satellite navigation like GPS, GLONASS or
Galileo is used, which are integrated into most smartphones
today. These methods only work outdoors and cannot
be used for indoor localization. One popular and low-
cost alternative for indoor localization is the use of Ultra-
wideband (UWB) transceivers. Especially with the wide
availability of cheap transceiver ICs (integrated circuits)
for UWB this method gained popularity.

An easily underestimated factor for the range measure-
ments is the antenna design as well as other influences
like room geometry. Ledergerber and D’Andrea [1, 2]
have shown that the error of the measurements depends
on the antenna orientation. Further, they proposed the
use of sparse Gaussian processs (GPs) with a periodic
kernel to predict this error for two way ranging (TWR)
measurements. Zhao et al. [3] have demonstrated a cor-
rection scheme using neural networks for TWR and time
difference of arrival (TDoA) measurements. Further, Li et
al. [4] presented an effective factor graph based localization
scheme for cooperative time of arrival (ToA) measurements.

Building upon previously published bias correction
methods, we propose a factor graph based probabilistic lo-
calization scheme for TDoA measurements with stochastic

variational Gaussian processs (SVGPs) for bias correction
and evaluate the novel localization scheme with data from
an indoor drone.

II. BACKGROUND
A. Time Difference of Arrival Measurements

The central information we use for localization is the
signal propagation time τ between a transmitter and a
receiver. Together with a known propagation speed c
we get the distance d = τ

c . The propagation speed c is
usually well known and therefore we abstract from it in
the following. This is the measurement principle employed
in ToA measurements. Geometrically speaking it is defined
by

d̂ki = ||xk − xi||2 (1)

where xk is the position of the receiver and xi is the
position of the transmitter. In practice we usually have
to deal with noisy measurements and other uncertainties,
so we define dki = d̂ki + ϵki where ϵki is the measurement
noise. For ToA measurements we need a reliable and precise
clock synchronization to measure the propagation delay
between the sender and the receiver. This problem can
be mitigated by using TWR, where the signal round-trip
time is measured. However, TWR does not scale well for
multi-agent systems due to the communication overhead
because of the individual communication with every agent.

The measurement of TDoA is less affected by clock
synchronization and scales much better than TWR because
the agents only need to listen passively. It is geometrically
defined by

ẑk
ij = d̂ki − d̂kj = ||xk − xi||2 − ||xk − xj ||2 (2)

where xk is the receiver and xi, xj are the transmitters
as illustrated in Fig. 1. As TDoA measurements are also
noisy, we define them as zk

ij = ẑk
ij + ϵk

ij where ϵk
ij is the

noise.

B. Factor Graphs
We use factor graphs to model the problem structure

and to solve the inference problem by exploiting the
independence statements contained in the graph structure
of the model. Even though the history of factor graphs lies
in the coding theory [5], the use cases have advanced so that
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Fig. 1: Top view of the quadrocopter. The TDoA measure-
ment ẑk

ij between agent xk and the anchors xi and xj is
the difference of the distances d̂ki and d̂kj . The angles αi

and αj to the anchors depend on the agents orientation
and position.

factor graphs, together with the sum-product algorithm,
can be seen as a unifying framework for algorithms of a
broad variety of domains like optimization, state estimation,
sensor fusion, and control systems [6, 7]. Many classical
algorithms like the Kalman filter can be seen as a special
instance of inference on factor graphs.

Formally a factor graph is described by a factoriza-
tion f(S) =

∏n
i=1 fi(Si) with the variables Si ⊆ S =

{X1, . . . , Xm}. The factor graph f is an undirected bi-
partite graph between the functions fi and the random
variables Xj as nodes. In probabilistic settings the variables
Xj are typically random variables and the function f(S)
describes the joint probability. The marginal distribution
of a random variable Xj can be computed by passing
messages along the edges of the graph according to the
sum-product-rule [8].

We will focus on normally distributed random variables
X ∼ N (m, Σ) with W = Σ−1 the information matrix and
ξ = Wm the weighted mean. Tabulated message passing
rules can be derived for various nodes (resp. functions),
see [9] for details. In this paper we use Forney style
factor graphs where no more nodes than two share a
common variable and variables are drawn as an edge
between two factor nodes. The equality node serves as
a junction point to overcome this restriction. Nodes can
be composed to more complex graphs where rules can
simply be reused. The graph can also be seen as a tool
to develop distributed algorithms by dividing the graph
into independent parts and using the opened edges as
communication connections [4].

For a given non-loopy graph we can achieve exact
inference by passing messages through the graph. For loopy
graphs the sum-product-algorithm has to be iterated and
is not guaranteed to converge but it provides useful results
in many practical settings [10].

C. Gaussian processs (GPs)
GPs are widely used nowadays in a variety of applications

to solve regression and classification problems. An impor-
tant advantage of GPs over non-Bayesian machine-learning
approaches such as neural networks is, that – as probabilis-
tic models – they are fully compatible with factor graphs.
A GP ϱ(x) ∼ GP(0, k(x, x′)) with x ∈ RD describes prior

knowledge about the distribution of a function ϱ(x) and is
fully specified by the kernel function k(x, x′). By choice of
the kernel we can incorporate prior assumptions about the
function, e.g. its periodicity or smoothness. Generally, the
choice of the right kernel structure is crucial to achieving
good performance on a dataset. The kernel usually depends
on some free hyperparameters θ, which then are to be
optimized on the specific dataset. When the GP is evaluated
over a finite set of input points {x1, . . . , xn}, the function
values evaluated at those points have a joint multivariate
Gaussian distribution

[
ϱ(x1), . . . , ϱ(xn)

]
∼ N (0, K) and

the kernel matrix K is constructed by evaluation of the
kernel function k for all pairs of inputs x and x′.

In the standard GP regression setting it is assumed that
we have noisy measurements from the latent function ϱ, i.e.
we have measured targets ϵi = ϱ(xi) + ν. In case that the
measurement noise is Gaussian white noise ν ∼ N (0, σ2),
there is a closed-form solution for the predictive distribution
of function values ϱ∗ evaluated at a test-point x∗. This
so-called posterior itself is a Gaussian distribution given
as ϱ∗ ∼ N (mpost, σ2

post).
For large numbers of samples the prediction via GPs gets

computationally expensive due to the inversion of large
covariance matrices. SVGPs greatly reduce the computa-
tional complexity by using a smaller number of inducing
points [11].

The correct selection of the hyperparameters is important
to capture the problem structure. By optimizing the
marginal likelihood function, the hyperparameters θ can
be optimized. The inducing points for the SVGPs can be
seen as additional hyperparameters and be optimized as
well.

III. METHODOLOGY
A. Factor Graph Based TDoA Localization

The TDoA measurement equation is inherently nonlinear
because of the Euclidean norm. The Euclidean norm for
vector a = [a1, . . . , an]T is defined by ||a||2 =

√∑n
i=0 a2

i

and with its gradient ∇||a||2 = ∂||a||2
∂a = a

||a||2
we can define

the linearized Euclidean norm as

||a||2̃ = ||ã||2 + ãT /||ã||2 · (a− ã) (3)

where ã is the linearization point of a. Now we can linearize
ẑk

ij as

ẑk
ij ≈ ||xk − xi||2̃ − ||xk − xj ||2̃ (4)

= D + (B1 −B2)xk −B1xi + B2xj (5)

where B1 = d̃T
ki

d̃ki
, B2 = d̃T

kj

d̃kj
, D = d̃ki− d̃kj−B1d̃ki +B2d̃kj ,

d̃ab = x̃a−x̃b and d̃ab = ||d̃ab||2 depend on the linearization
points x̃k, x̃i and x̃j .

With Eq. (5) we can construct the corresponding lin-
earized factor graph in Fig. 2. To infer a new position
from a measurement, standard Gaussian message pass-
ing over this graph may be used. To do so we have
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D ẑk
ij

B1 − B2

−B1 B2
1 2

3 4

5 6
7

8

Fig. 2: Factor graph for localization where ẑk
ij is the TDoA
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Fig. 3: Integration of the TDoA node from Fig. 2 into
the correction step of a Kalman filter slice in factor graph
representation. The measurement zk

ij is corrected by the
GP prediction mk

ij .

to compute the matrices B1, B2 and D based on the
current estimate of xk, xi and xj . Then we compute
−→µ3 = N (−B1

−→m1, B1
−→Σ1BT

1 ), −→µ4 = N (B2
−→m2, B2

−→Σ2BT
2 ) and

←−µ7 = N (←−m6−−→m3−−→m4−D,
←−Σ6 +−→Σ3 +−→Σ4) with←−W7 =←−Σ7

−1,←−
ξ7 = ←−W7

←−m7. For the reverse pass through the B1 − B2
node we compute

←−
ξ8 = BT

12
←−
ξ7 and ←−W8 = BT

12
←−
W7B12 with

B12 = B1 −B2.
We can now integrate the TDoA-node from Fig. 2 into

the correction step of a full Kalman filter as shown in
Fig. 3. The model for the prediction step depends on
the application. We use the drone model from Mueller
et al. [12] for the drone in this setup. It models the drone
dynamics and incorporates the gyroscope and accelerometer
measurements as input.

Further, we do not have to assume that xi and xj are
stationary anchors. We can interpret them as other agents
and create a bigger distributed Kalman filter (e.g. see Li et
al. [4]). The structure gets more interconnected then and we
can interpret the edges between agents as communication
channels, yielding a distributed algorithm.

B. Gaussian Process Error Model
The measurement of UWB based distances has a bias

error that strongly correlates with the position and orienta-
tion of the agent to the anchors and vice versa [2, 3]. The
measurement error is

ϵk
ij = zk

ij − (||xgt
k − xgt

i ||2 − ||x
gt
k − xgt

j ||2) (6)

where xgt
i , xgt

j , xgt
k are the ground truth positions. For

TDoA measurements we have to consider two anchors
per measurement and therefore also two orientations. The

z angles (yaw angles) are especially relevant because
depending on this angle the line of sight between an anchor
and the drone may be interrupted (see Section III-C for
further details).

We now want to solve the regression problem by predict-
ing the bias using GPs. When we consider angles, a periodic
kernel kp(r) = σ2 exp

(
−2 sin(πr/T )2/l2)

with T = 2π the
period, l the lengthscale, σ a scaling factor and r = |α−α′|
is an obvious choice. As shown in Fig. 1 there are two z
angles (αi and αj) to the two anchors. For this reason we
propose to use the sum

kTDoAz1(αi, αj , α′
i, α′

j) = kp(|αi − α′
i|)

+kp(|αj − α′
j |)

(7)

as a kernel for the bias correction. For comparison, we
define the less smooth and non-periodic kernel kTDoAz2 in
the same way as the sum of two Matern 5/2 kernels as

kTDoAz2(αi, αj , α′
i, α′

j) = kMatern52(|αi − α′
i|)

+kMatern52(|αj − α′
j |)

(8)

with kMatern52(r) = σ2
(

1 +
√

5r
l + 5r2

3l2

)
exp

(
−

√
5r
l

)
.

In order to also integrate the remaining rotational angles
and the drone position we use the kernel kL(x, x′) =
θ0 exp

(
−

(
1− xT x′

||x||2||x′||2

)
/θ1 − ((||x||2 − ||x′||2)2)/θ2

)
,

which was introduced by Ledergerber and D’Andrea [1]
for TWR data. The vector x is the position of the anchor
from within the drone coordinate system. As before we
also apply this kernel to the TDoA problem by using the
sum

kTDoA(xki, xkj , x′
ki, x′

kj) = kL(xki, x′
ki)

+kL(xkj , x′
kj)

. (9)

With these kernels we define the GP models as GP(0, k).
Then we can predict the measurement error ϵk

ij as the
posterior distribution ϵk

ij ∼ N (mk
ij , σ2

post) where mk
ij and

σ2
post are the mean and variance of the GP posterior

prediction. These predictions are used to correct the
measurement inputs of the Kalman filter.

C. Experimental Setup
For the practical experiments a quadrocopter (Crazyflie 2

[13]) was used as an agent to record experimental data. The
loco positioning system (lps), with the Decawave DWM1000
chipset, was responsible for UWB communication and
localization.

The Crazyflie drone records TDoA measurements from
eight anchors that were distributed in the corners of the
room. The absolute reference is provided by a Vicon
Vero motion tracking system. The drone was tracked
with multiple markers to provide position and rotational
information, while the anchor positions were tracked with
a single marker. The general arrangement of the drone,
camera and position system can be seen in Fig. 4.

The TDoA measurements were taken between neighbor-
ing anchor id pairs. So for the eight anchors in the setup
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Fig. 4: For the experimental setup a drone (yellow) is flying
a trajectory while taking TDoA measurements from the
eight anchors (green). A tracking system with six cameras
(blue) is used to measure the ground truth positions of both
the agent and the anchors. In purple the zigzag training
trajectory and in red the circular test trajectory is depicted.

the measurements were taken for the pairs (0, 1), (1, 2),
. . . , (7, 0). These measurements were sampled with 180 Hz
during the flight and saved on a microSD card together with
the accelerometer and gyroscope data. The motion capture
system recorded the flight at 300 Hz. The data recorded
from the drone and the camera system were synchronized
at the take-off point of the drone and the clock drift was
compensated.

The quadrocopter is a nonholonomic system, i.e. only the
position and the yaw angle can be chosen arbitrarily. The
roll and pitch angle depend on the actual flight trajectory.
We decided to fly a zigzag and a circle trajectory to capture
a wide range of different angles and positions. These
trajectories were flown while the quadrocopter rotated
around its yaw axis. This way the line of sight between the
UWB antenna of the quadrocopter and the anchors gets
interrupted depending on the orientation.

The data from the flights was separated into training and
test data sets. For a good coverage of the room the zigzag
trajectory was used as training data to create the SVGP
model for the TDoA measurement error ϵk

ij . To compute
this error, the motion capture system was used as ground
truth reference as described in Eq. (6). With this in- and
output data the hyperparameters of the GP (including the
inducing points) were optimized until convergence. This
training was repeated for the kernels with different numbers
of inducing points. Then the Kalman filter was run on the
uncorrected data and the actual GP input was computed
corresponding to Section III-B.

D. Evaluation
To evaluate the effectiveness of the bias correction the

localization with the Kalman filter was run twice. Once
without any correction of the TDoA measurements and
a second time with the SVGP based correction of the
measurements. The SVGP model is fed from the estimated
state of the Kalman filter.

We define the localization error as the Euclidean norm of
the difference between the ground truth reference position
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Fig. 5: Improvement of the RMS localization error depends
on the number of inducing points and the kernel.
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Fig. 6: Comparison between the error distribution of
the localization with uncorrected and corrected TDoA
measurements. The model was trained with the kTDoA
kernel with 30 inducing points on the zigzag pattern and
evaluated on a flight with the circular trajectory. There
is a significant improvement of the localization error with
the GP based bias prediction correction.

of the motion capture camera system and the position
of the state vector of the Kalman filter estimation. We
evaluate the quadratic mean over these distances.

In Fig. 5 the number of inducing points is evaluated
against the improvement of the localization due to the
bias correction. A single zigzag flight was used for the
training of the bias correction model. The improvement
was averaged over three circular test flights. Further, we
evaluated the distribution of the localization error. See
Fig. 6 for an exemplary distribution.

IV. RESULTS & DISCUSSION

The results of the evaluation show that the probabilistic
localization scheme with GP based bias correction can
greatly reduce the average localization error. The bias
correction model from the zigzag training trajectory is
general enough to be transferred to the circle validation
trajectory. The improvement correlates with the number
of inducing points. Already with 30 inducing points the
kTDoA-kernel approach shows very promising results with
an improvement of the root mean square (RMS) localization
error of 15.25 % with an absolute error of 0.226 m with the
uncorrected measurements and 0.192 m with the corrected
measurements. Increasing the number of inducing points
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Measurement error in mFig. 7: Left side: Plot of the TDoA measurement errors in
m against the z-angles (αi, αj) of the agent to an anchor
pair (see Fig. 1). Right side: Predicted mean of the sparse
GP with the kTDoAz1-kernel, which is supported by the
red inducing points. The configuration space is only partly
covered because some points lie outside of or too close to
the bounding box and cannot be reached due to walls.

leads to further improvement (18.57 % with 170 inducing
points).

In Fig. 7 we can see a strong correlation between the
measurement error and the drone orientation. The posterior
distribution of the GP provides a good model for the error
bias. The plot further helps to explain the good result with
the rather low number of inducing points. The geometric
constraints introduced by the arrangement of the anchors
result in an only partially covered input configuration
space. Therefore, the GP just has to explain this subspace.
Although the figure only shows a representation for the
kTDoAz1 kernel, the geometric constraints and thus sparsity
also apply to the higher dimensional models with the kTDoA
kernel.

Overall the localization improvement increases with the
number of inducing points, but with diminishing returns.
This is especially true if we take a look at the model
complexity because the SVGP model scales with O(m3)
where m is the number of inducing points. The model
convergence depends on the random initialization of the
inducing points and therefore the performance graph is
slightly noisy. Further, there is no significant difference
between the kTDoAz1-kernel and the kTDoAz2-kernel. This
can again be explained by the sparse configuration space
which provides no real benefit for the periodic kernel.

An interesting extension to the work of Li et al. [4] and
this work would be the application in multi-agent-systems.
The connections of the factor graph between agents would
be interpreted as communication and a message passing
scheme over the whole graph would cooperatively infer the
positions of the multi-agent-system.
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