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Abstract—In this study, we construct, for the first time, the
optimal Bayesian Regression (OBR) when the training data
are serially dependent. To model the effect of dependency, we
assume the training data are generated from VAR(p), which
is a multi-dimensional vector autoregressive process of order p.
Our numerical experiments show that when the training samples
follow a VAR dependency model, the proposed regressor can
outperform the usual regressor, which is developed under sample
independence assumption.
Optimal Bayesian Regression, Vector Autoregressive Pro-
cesses, Serially Dependent Training Data

I. INTRODUCTION

Suppose x and y denote a (q−1)-dimensional feature vector
(also known as predictors) and a target variable (or response),
respectively. The goal in decision theory is to choose an
operator ψ(x) to estimate y for each input vector x [1, p.46].
In contrast with classical statistical estimation in which y is
considered as a deterministic unknown constant, in Bayesian
estimation y is considered as a random variable with a joint
distribution f(x, y) with random vectors x [2]. To determine
the optimal operator ψo(x), it is common to minimize the
mean square error (MSE) resulting in MMSE estimator given
by

ψo(x) = argmin
ψ∈F

Ef
[
(y − ψ(x))

2
]

= argmin
ψ∈F

∫ ∫
(y − ψ(x))

2
f(x, y)dx dy , (1)

where F denotes the class of all operators. The criterion (1) is
also known as the Bayesian mean square error to distinguish
that from the conventional (non-Bayesian) MSE [2, p.311]. It
is well-known that the ψo(x) is obtained by [2]

ψo(x) = E [y|x] =
∫
y f(y|x) dy . (2)

However, if f(x, y) is a multivariate Gaussian density func-
tion with mean m = [mT

x my]
T and covariance Σ =(

Σxx ΣT
yx

Σyx Σyy

)
where mx and Σxx are (q− 1) and (q− 1)×

(q − 1) dimensional vector and matrix, respectively, then [2,
p.324]

ψo(x) = my +ΣyxΣ
−1
xx (x−mx) , (3)

which is a linear function of x. The goal in the inference
stage is to learn f(x, y) given a training data S. For (3), the
inference stage includes replacing my , Σyx, and Σ−1

xx with
their sample estimates to create the Bayes plug-in regression
rule.

In recent years, a new framework known as optimal
Bayesian regression (OBR) was proposed in [3], and was later
extended to transfer regression in [4]. In contrast to Bayesian
linear regression (BLR) framework [1, p.152], in OBR no
linear mapping is imposed between y and x; and (II) the
uncertainty in OBR is directly considered on the joint distri-
bution of y and x. Let f(x, y,θ) denote the joint distribution
of y and x where the random vector θ parameterizes the
distribution and where the dependence of the distribution on θ
is made explicit by writing f(.,θ). In OBR, it is assumed that
f(x, y,θ) belongs to an uncertainty class Θ (parameter space)
of joint distributions governed by a prior distribution π(θ), and
we desire a regressor to minimize the expected error (defined
by taking some criteria) over the uncertainty class. Given a
training sample S and taking the MSE as the criterion, the
OBR is defined as [3], [4],

ψOBR (x) =

∫ ∫
yf(y|x,θ)dy f(θ|S) dθ = Eπ*(θ) [ψo(x|θ)] ,

(4)

where in analogy to (2),

ψo(x|θ)
∆
=

∫
yf(y|x,θ)dy , (5)

and

π∗(θ)
∆
= f(θ|S) , (6)

is the posterior probability density function. In other words,
π∗(θ) characterizes the updated information about θ after
observing S. From (4), we can also rewrite ψOBR (x) as [3]

ψOBR (x) = EfΘ [y|x] =
∫
y fΘ(y|x) dy , (7)

where fΘ (x, y) is known as the effective joint distribution of
x and y defined as

fΘ (x, y) =

∫
f (x, y|θ)π∗ (θ) dθ . (8)
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One common aspect among the aforementioned machineries
of Bayesian regression is the usual assumption of having inde-
pendent and identically distributed data. While this assumption
might be true under controlled conditions, in general the data
might neither be independent nor identically distributed. In
such applications, it would be beneficial to treat them as the
output of some stochastic process [5], [6], [7], [8], [9], [10],
[11].

Recently, we considered the problem of having sequentially
dependent data in the context of optimal Bayesian classifi-
cation (OBC) [9]. To model the effect of dependency, we
assumed that the training observations are generated from
a VAR(p) process. As in the case of OBC, we assumed
the existence of an uncertainty class about the parameters
governing the VARy(p) model.

In the present investigation, we develop the OBR rule under
a similar scenario where we assume the training samples are
generated from a VAR(p) process. Similarly, we assume an
uncertainty class about the parameters governing the VAR(p)
model. To model this uncertainty, we assume that model
parameters are random variables with a prior distribution.

Throughout this work, we use boldface lower case letters
to denote a column vector. Two special cases are 0n and 1n,
which denote a column vector of length n with elements 0 and
1, respectively. A boldface upper case letter denotes a matrix.
A special case is the identity matrix of size n denoted by
In. For a n×m matrix A, vec(A) denotes the vectorization
operator acting on A such that column of matrix A are
concatenated to produce an nm-dimensional column vector.
Conversely, for a nm-dimensional column vector a, matn(a)
creates an n ×m matrix A such that its ith column consists
of elements from ((i− 1)×n)+ 1 to i×n in a, i = 1, ...,m.
Therefore, matn(vec(A)) = A. Furthermore, tr(.) and ⊗
denote the trace and the Kronecker product, respectively.
Furthermore, a multivariate Gaussian density function with
mean a and precision matrix A (covariance matrix A−1) is
denoted as N

(
a,A−1

)
.

The paper is organized as follows. In Section II, we for-
mulate the problem of training data generation from VAR
processes. Section III presents the main result of the present
work. There, we obtain the optimal Bayesian regression rule
when the training observations follow VAR(p). In Section IV,
the numerical experiments comparing the performance of the
developed regression rule are presented. Section V concludes
the paper and discusses some of the future directions that can
be pursued.

II. VECTOR AUTOREGRESSIVE DEPENDENCY IN
TRAINING DATA

Let x1, ...,xn be n available training (column) feature vec-
tors with corresponding (univariate) response values y1, ..., yn
taken from a q-dimensional VAR(p) process and defined as,

vt = c+

p∑
i=1

Aivt−i + ut, (9)

where
vt = [xt,1, xt,2, ..., xt,q−1, yt]

T , (10)

for t = 1, ..., n, xt,i is the ith dimension of vector xt,
ut is q-dimensional Gaussian white-noise with E[ut] = 0,

E[utut
T ] = Σ =

(
Σxx ΣT

yx

Σyx Σyy

)
, E[uturT ] = 0 for r ̸= t,

Ai is a q× q matrix of model parameters, and c is the vector
of q intercept terms. Note that here we assumed (q − 1)-
dimensional feature vectors (rather than q-dimensional) to
simplify notation. We can equivalently write (9) as

VS = AZ+U, (11)

where U = [u1, ...,un], VS = [v1, ...,vn] is a q × n
dimensional matrix, A = [c,A1, ...,Ap] is a q × (1 + pq)
dimensional matrix of unknown model parameters (similar to
[12, p. 224] and [9] we assume known Σ), Z = [z1, ..., zn] is
a (1 + pq)× n matrix with

zt = [1,vt−1
T , ...,vt−p

T ]T , (12)

where v0 = v−1 = ... = v1−p = 0q .
Let vS = vec(VS), a = vec(A), L

∆
= Σ−1, and L1/2

denote the square root of L such that L1/2L1/2 = L. To
derive the VAR-OBR, we assume the prior distribution of a
is a multivariate Gaussian with known (1 + pq)q dimensional
mean vector m and (1 + pq)q × (1 + pq)q precision Λ:

π(a) ∝ |Λ| 12 exp
(
−1

2
(a−m)TΛ(a−m)

)
. (13)

We can express the likelihood as (see [12, p. 223]):

f(vS |a) ∝ |L|n2 exp

(
− 1

2

(
(a− µ)

T
Γ (a− µ)

+ (s−Wµ)
T
(s−Wµ)

))
, (14)

where

s =
(
In ⊗ L1/2

)
vS , W = ZT ⊗ L1/2 ,

Γ = ZZT ⊗ L , µ = Γ−1 (Z⊗ L)vS . (15)

The posterior distribution π*(a) is obtained as

π*(a) =
π(a)f(vS |a)∫

R(1+pq)q π(a)f(vS |a)da
. (16)

Similarly to the proof presented in Appendix B of [9], we can
write

π*(a) = (2π)
−(1+pq)q

2 |Λ|1/2exp
(
−1

2
(a−m)T Λ (a−m)

)
,

(17)

where

m = Λ
−1

(Λm+ Γµ) , (18)

Λ = Λ+ Γ =

(
Λ1 Λ

T

2

Λ2 Λ3

)
, (19)
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in which m and Λ are the parameters of the prior defined in
(13), µ and Γ are defined in (15), and as shown Λ1, Λ2, and
Λ3 partition Λ where Λ1 is a q × q matrix.

III. OPTIMAL BAYESIAN REGRESSION WITH VECTOR
AUTOREGRESSIVE DATA DEPENDENCY OF TRAINING DATA

We consider the problem of estimating the target variable
y for a given test feature vector x when the training data
is generated from (9). Although this assumption captures a
VAR dependency model between training data, it assumes the
test data is collected independently from training data. Similar
to [9], we assume the distribution of the test observation is
obtained by nullifying Ai in (9) for i = 1, ..., p. Let v =
[xT , y]T denote a test observation. Therefore, we can write

v = Ae1 + u, (20)

where e1 is a (1 + pq)-dimensional column vector with 1 at
the first position and 0 otherwise. Therefore, we can write

f (v|a,S) = N
(
Ae1,L

−1
)

= N
(
(e1

T ⊗ Iq)a,L
−1
)
. (21)

At this stage, we use the properties of marginal and conditional
Gaussian density function presented in [1, p.93] for deriving
the effective joint distribution of v, i.e. fΘ(v|S) using the
integral (8). By having π*(a) and f (v|a,S), we can write

fΘ(v|S) = fΘ(v) = fΘ(x,y) = N
(
meff,Σeff

)
, (22)

where

meff =
(
(e1

T ⊗ Iq
)
m = Me1 , (23)

Σeff = Σ+ (e1
T ⊗ Iq)Λ

−1
(e1 ⊗ Iq), (24)

such that

M
∆
= matq(m) , (25)

with m being defined in (18). We can rewrite (23) and (24)
as

meff = m1:q , (26)

Σeff = Σ+
(
Λ1 −Λ

T

2 Λ
−1

3 Λ2

)−1

. (27)

Replacing (22) in (8) and using standard properties of condi-
tional Gaussian density function [13, p.35] yield

ψVAR
OBR(x) = meff

y +Σeff
yx(Σ

eff
xx)

−1(x−meff
x ) , (28)

where meff
x and meff

y are obtained by partitioning meff defined
in (26) as

meff = [(meff
x )T meff

y ]T , (29)

where meff
x is a q − 1 dimensional vector (implying meff

y is
the last element of vector meff), and in analogy with the
block partitioned structure of Σ, Σeff determined from (27)
is partitioned as

Σeff =

(
Σeff

xx (Σeff
yx)

T

Σeff
yx Σeff

yy

)
, (30)

in which Σeff
xx is a (q − 1)× (q − 1) matrix.

IV. EVALUATION OF THE PROPOSED OBR

In this section, we evaluate the ability of the proposed
OBR (i.e. ψVAR

OBR(x) in (28)) to capture the dependence among
the samples. To this end, we compare the performance of
ψVAR

OBR(x) with respect to ψo(x) obtained from (3), in case the
training samples are generated from a VAR(p) process. Note
that, ψo(x) is the result of considering generation of training
samples from VAR(0) process (i.e., p = 0). By considering
p = 0 in (9), f (v) = N (c,Σ) and therefore the Bayes plug-
in regression rule in (3) is applicable.

One practical consideration about the implementation of the
proposed OBR regressor in (28) is that it depends on the
covariance matrix of the white-noise process. As a result, in
our numerical experiments, we consider two cases: I) Σ is
known; and II) it is estimated by its least squares estimator
(LSE) given by (see p. 75 [12])

Σ̂ =
1

(n− pq − 1)
Vs

(
In − ZT (ZZT )−1Z

)
Vs

T . (31)

In our numerical experiments, we examine:
I. the ability of ψVAR

OBR(x) to capture the dependence among
samples, compared to ψo(x), which was obtained under the
assumption of sample independence;

II. the effect of estimating the white-noise covariance matrix
using (31) on regressors performance; and

III. the effect of the order of the underlying VAR(p)
processes on the performance of the regressors.

In this regard, we consider two scenarios:
Scenario (a): q = 3, p = 1, c = 0q and

A1 =

0.8 0 0
0.2 0.4 0.2
0 0 0.5

 . (32)

Scenario (b): p = 2,

A2 =

−0.9 0 0
0 0.1 0

−0.2 0.2 0

 .
and all other experimental parameters similar to scenario (a).
We set the prior means (i.e. m) using parameters of Ai. In
particular, m = a = vec(A), where A = [c,A1, ...,Ap].
Then, as for the covariance matrix of the prior and the white-
noise process, we use a diagonal matrix with 0.1 and 0.2 as
diagonal elements, respectively. In order to estimate the mean
squared error of each regressor, we generate n ∈ [20, 100]
training samples from VAR(p) process and 1,000 independent
test observations and determine the prediction error rate. The
procedure of generating training observations and independent
test observations is repeated 500 times to estimate the mean
square error of each regressor for each n. Figure 1 shows
the performances of ψVAR

OBR(x) and ψo(x) as a function of
training sample size n in scenario (a) and (b), when the actual
covariance matrix of the white-noise process is known (i.e. Σ)
or estimated (i.e. Σ̂). In particular the results show:

I. in case of existence of sample dependence, in both scenar-
ios, the proposed ψVAR

OBR(x) leads to smaller mean squared error
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Fig. 1: Mean squared error of the regressors with and without sample dependence assumptions (i.e. ψVAR
OBR(x) and ψo(x)) as a

function of training sample size n, when the actual covariance matrix of the white-noise process is known (i.e. Σ) or estimated
(i.e. Σ̂). (a)-(b) depicts the results of Scenario (a)-(b), respectively.

rate compared to ψo(x), which assumes sample independence
among observations.

II. as we expected, estimating the white-noise covariance
matrix using (31) generally degrades performance of both
regressors (i.e. ψVAR

OBR(x) and ψo(x)) with respect to the use of
the actual covariance matrix in the structure of the regressors.
This degradation is more pronounced when the number of the
training samples is small. However, the effect of estimating
this covariance matrix on the performance of the regressors is
mediated as the sample size increases.

III. by increasing the order of the underlying VAR(p),
difference between the performance of the regressors with
and without sample dependence assumptions (i.e. ψVAR

OBR(x)
and ψo(x)) is more obvious. Such that, the performances
of the ψo(x,Σ) and ψo(x, Σ̂) compared to the ψVAR

OBR(x,Σ)
and ψVAR

OBR(x, Σ̂) in scenario (b) are much more weaker than
scenario (a).

V. DISCUSSION

In this work, we developed ψVAR
OBR(x), which incorporates

prior knowledge into regressor construction when the training
observations are serially dependent. Our initial numerical
experiments presented in this study confirms the capability
of the proposed regressor in capturing VAR dependency
among training samples and outperforms ψo(x) regressor
obtained under the assumption of sample independence. As
with any Bayesian technique, the performance of ψVAR

OBR(x)
highly depends on the strength of the prior knowledge, which
is integrated into the regressor through the prior distribution.
In this paper, to construct the ψVAR

OBR(x), we assumed that we
have the underlying actual model and we use knowledge of the
underlying parameters of VAR(p) processes used to generate
the data. However, such knowledge is not generally available
in practice. In practical applications, we have little or no prior
knowledge about the process and the parameters. Therefore,

the future work will focus on developing ψVAR
OBR(x) when we

have no or little knowledge about the prior and examine the
performance of the developed regressor on real data sets.
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