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ABSTRACT

Inference from gravitational-wave observations relies on the
availability of accurate theoretical waveform models to com-
pare with the data. This paper considers the rapid genera-
tion of surrogate time-domain waveforms consistent with the
gravitational-wave signature of the merger of spin-aligned bi-
nary black holes. Building on previous works, a machine-
learning model is proposed that allows for highly-accurate
waveform regression from a set of examples. An improve-
ment of about an order of magnitude in accuracy with respect
to the state of the art is demonstrated, along with a signifi-
cant speed up in computing time with respect to the reference
generation software tools.

Index Terms— Principal component regression – Chirp
signals – Astrophysics – Gravitational waves – Waveforms
generation

1. MOTIVATIONS

The first observation of gravitational waves (GW) by the
LIGO/Virgo collaboration in 2015 [1] marked the advent of
gravitational-wave astronomy. Since this date about 50 events
have been detected [2] associated to the merger of compact
star binaries, primarily binary black holes, the focus of this
work.

Theoretical waveform models (or templates) are used to
detect the gravitational-wave signals using matched filtering
[2], or to infer the astrophysical parameters of their source us-
ing Bayesian samplers [3]. For both those tasks, a large num-
ber of template waveforms (about 105 to 106) are required to
be computed to cover the relevant parameter space.

Waveform models are deduced from the resolution of the
source dynamics which is a difficult relativistic problem (see
[4] for a recent review). The evaluation of recent and accurate
waveform models is computationally expensive and actually
dominates the computational budget for parameter inference.

In the next decade, LIGO and Virgo detectors are expected
to conduct at least two major observing runs with improved
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sensitivity, leading to a large increase in the number of de-
tected signals. The analysis of those future observations calls
for numerically efficient, yet accurate waveform generators.

The waveform morphology being reasonably smooth and
slowly varying with respect to its parameters (i.e., the binary
component masses and their spins), it is possible to fit a signal
model based on a generic amplitude and phase evolution from
a set of example waveforms. We aim at reproducing noise-
free waveform models with high fidelity thanks to a fast learn-
ing algorithm. The targeted accuracy is ≲ 10−3 in mismatch,
a figure-of-merit defined later in Sec. 3.5. This has been suc-
cessfully realized using reduced-order modelling (based on
tensor spline fitting) [5, 6] and more standard machine learn-
ing approach such as mixture-of-experts regression [7] and
artificial neural networks [8, 9].

In this work, we propose a model with reduced complex-
ity based on principal component regression, that is able to
improve the overall regression accuracy by about an order
of magnitude. It can be implemented using off-the-shelf
algorithms from Scikit-learn software library [10].
These performances are notably achieved thanks to a differ-
ent choice of features.

2. GRAVITATIONAL-WAVE WAVEFORMS

Gravitational waves are oscillations of the space-time curva-
ture propagating through space [1]. So far, the only sources
detected are coalescences of compact star binaries, composed
of either black holes and/or neutron stars. Here we focus
on “spin-aligned” binary black hole (BBH) where the spins
Si ∈ R3 for i = 1, 2 of both objects are aligned with the
orbital angular momentum L⃗ i.e., the z axis normal to the or-
bital plane. In this case, the parameter space reduces to four
parameters {m1, m2, S1z, S2z} [11] with mi for i = 1, 2
the mass of each black hole. The gravitational-wave signal
is also determined by extrinsic parameters such as the lumi-
nosity distance r in megaparsecs (Mpc), i.e. the distance be-
tween the source and the observer, and the direction of the
line of sight parametrized by the two angles (ι, φ), namely
the inclination of the source and the initial phase, see Fig. 1.

General relativity predicts the existence of two polariza-
tion modes for gravitational waves, the plus and cross polar-
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Fig. 1. Physical parameters of a compact star binary – Intrin-
sic parameters {m1, m2, S1, S2} (component masses and
spins) and extrinsic parameters such as the direction of the
line of sight (ι, φ) and the distance r. For spin-aligned
binaries component spins are aligned with the orbital an-
gular momentum J⃗ so the intrinsic parameters reduce to
{m1, m2, S1z, S2z}.

izations, denoted h+(t) and h×(t). It is customary to ex-
press the two polarizations as a single complex-valued time
series h(t) = h+(t) − ih×(t) referred to as gravitational-
wave strain.

The computation of h(t) needs to resolve the source dy-
namics. There are no exact closed-form solution for this rela-
tivistic problem, however accurate approximations are avail-
able. In the spin-aligned case and for binaries with low mass
ratio q (defined as q = m1/m2 and with q ≥ 1) and low total
mass M = m1 + m2, the following expression [4] can be
used for the strain

h(t) ∝ M

r
a(t)

[
1 + cos2 ι

2
cos(Φ(t)− 2φ)

−i cos ι sin(Φ(t)− 2φ)] (1)

where a(t) and Φ(t) stand for the amplitude and phase of
the dominant mode in the spin-weighted spherical harmonics
expansion of h(t) (see [4] for details).

General relativity’s scale invariance implies h(t;m1,m2) =
h(λt;λm1, λm2) [7]. As a consequence, the total mass
M∗ = m1 + m2 can be fixed to a fiducial value1 and in
the case of spin-aligned BBH, waveforms can be described
using a reduced number of three intrinsic parameters, e.g.,
{q, S1z, S2z}. The extrinsic parameters r∗, ι and φ cor-
respond to simple scaling or phase factors that can be ap-
plied a posteriori in the waveform computation. We thus
fix r∗ = 1Mpc, and (ι∗, φ∗) = (0, 0) in the sequel, with
no loss of generality. With such a setting, the GW signal

1Here, we used M∗ = 20M⊙ with M⊙ the solar mass.

h(t) ∝ a(t)e−iΦ(t) appears as an amplitude and frequency
modulated signal, often referred to as “chirp” for short, with
a(t) and Φ(t) its amplitude and phase parameters exhibiting
non-oscillatory and smooth behaviours (see Fig. 2).

A range of models allows the generation of approximated
yet accurate waveforms for data analysis purposes [4]. Here,
we use SEOBNRv4 [11] based on the effective-one-body
formalism (EOB). Fig. 2 shows an example of the expected
gravitational-wave signal from a BBH merger.

Fig. 2. Top: example of gravitational-wave waveform ob-
tained with the SEOBNRv4 model for a spin-aligned BBH.
Bottom: associated amplitude and phase waveform attributes
obtained from the waveform following Sec. 3.1.

3. WAVEFORM GENERATION MODEL

Following [7] we now introduce a generative model able to
regress waveforms given θ = {m1,m2, S1z, S2z} the set
of features that collects the input astrophysical parameters.
The proposed regressor is a principal component regressor
[12], that consists in regressing the PCA coefficients of the
attributes from polynomial combining of the features. The
waveform generation essentially performs the reverse pro-
cess: obtain estimates for the PCA coefficients from the
regressor, that are inverted to compute attributes, which in
turn are mapped to waveforms.

3.1. Mapping to attributes

Over its entire duration, the chirp signal h(t) goes through
a sequence of three phases associated to different dynami-
cal regimes: inspiral when the two black holes are far apart,
merger when they are close and “plunge” onto each other
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and ringdown when the merger remnant settles down to equi-
librium [4]. The amplitude and phase evolve over different
timescales during these phases. To capture their variations
with a uniform accuracy over the entire waveform duration,
amplitude and phase are discretized in time with a varying
sampling resolution.

Time grid goes from tstart = −20 s to tend = 0.006
with t = 0 at maximum amplitude. Concretely, 4096 sam-
ple points are computed over the non-uniform time grid
t̃ = sign (t) |t|

1
α where α = 0.35 [7]. The sampling rate is

reduced in the inspiral phase where both the amplitude and
phase evolutions are slow, while it is increased when getting
closer to the merger where the amplitude reaches its maxi-
mum, and where the phase evolves rapidly. This resampling
has two benefits: data reduction during inspiral 2, and high
accuracy near the merger.

3.2. Data reduction

The training set is reduced through a principal component
analysis (PCA) of each waveform attribute after an alignment
to 0 at t = tstart for PCA efficency purposes3. The mini-
mal number of principal components (PC) required to reach
the maximal capabilities of the model is determined by cross-
validation (see Sec. 4.2).

3.3. Regression

Schmidt et al. [7] use a mixture of experts (MoE) regres-
sor to infer the PCA coefficients from the set of features
{q, χ1z, χ2z} where χ⃗i = S⃗i/m

2
i for i = 1, 2 are the dimen-

sionless spins. MoE is an ensemble learning method, based
on a weighted sum of linear regressors called “experts” [12].

In this work, a single linear regressor is preferred and ap-
plied to a different set of features, expanded with polynomial
combinations up to a pre-determined order. This maximum
order is computed to maximize a score, see Sec. 4.2.

Choosing the initial set of features has a significant impact
on the final score and regression accuracy. To leading order,
the amplitude and phase evolution are known [4] to depend on
the chirp mass M = (m1m2)

3/5/M1/5, the mass ratio q and
the effective spin χeff = (qχ1z + χ2z)/(1 + q). It is natural
to think that those physically motivated parameters are good
candidates to fit the data.

Systematic tests with subsets made of different feature
combinations were performed and the final model use the fea-
ture set leading to the best score (see Sec. 4.2.2).

2This allows to easily process waveforms sampled at 16384 Hz on a stan-
dard laptop.

3The amplitude and phase offsets subtracted by the alignment procedure
can be fitted and added back at the generation stage to produce the full wave-
form. Though we don’t detail this part here but this can be done with good
accuracy with the same regressor.

3.4. Waveform generation

Once the model is trained, the usage goes as follows: the PC
coefficients of the attributes are predicted for the parameters
of the desired compact binary. The attribute time series are
deduced from the predicted PC coefficients and the waveform
amplitude and phase are interpolated from the attributes on
the (uniform) time grid used for data analysis. The GW po-
larizations h+(t) and h×(t) are finally computed by applying
(1) with the requested distance, inclination and initial phase.

3.5. Scoring

The regression accuracy is evaluated by a specific metric
called mismatch or unfaithfulness [13]. The mismatch be-
tween two waveforms h, g ∈ CN is defined as:

mismatch (h, g) = min
τ∈R

[
1− |⟨hτ , g⟩|

∥hτ∥ ∥g∥

]
(2)

where hτ (t) := h(t−τ) and with the scalar product: ⟨h, g⟩ =∫ h(f)g∗(f)
S(f) df defined in the Fourier domain and with f being

the frequency variable. This metric is a loss function (smaller
is better) and it is phase-shift and time-shift invariant. The
definition in (2) allows for a frequency-dependent weight-
ing, usually fixed to the GW detector noise power spectrum
density S(f). Here, we assume a flat noise curve S(f) =
1, which leads to a conservative constraint as the regression
should then be equally accurate at all frequencies.

Errors in the waveform approximation lead to systematic
errors in the astrophysical parameters estimates obtained from
the observations. Those systematic errors from mis-modeling
should be smaller than the statistical errors (due to the pres-
ence of noise in the observations). This principle leads to
the rule of thumb (see e.g., App. G of [13]) stating that the
mismatch should be < N/(2 SNR2) where N is the effective
number of intrinsic parameters and SNR is the signal-to-noise
ratio. Schmidt et al. [7] achieve a median mismatch value of
5 × 10−4, with tails going to 10−1 in the worst case. In the
spin aligned case with N = 3 effective parameters, this cor-
responds to an applicability range that goes up to SNR = 54
(3 in the worst case).

4. RESULTS

4.1. Training and testing datasets

A dataset of 4000 randomly distributed BBH waveforms was
simulated with the SEOBNRv4 model from the LALSimulation
software library [14]. The mass ratio q was randomly drawn
uniformly in the range [1, 20] and spins χ1z, χ2z uniformly
over [−0.8, 0.95]. Such dataset is comparable to the one used
in [7].

For the subsequent analysis, the dataset is splitted into a
training and a testing set that corresponds to 80% and 20%
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of the main dataset respectively. All reported results are ob-
tained with the testing set.

4.2. Hyperparameter tuning

4.2.1. Number of PC after truncation

The overall modelling error is essentially due to the truncation
of the PC expansion and the regression for each attribute. We
first evaluate the former in Fig. 3 (circles and boxes). The
phase approximation plays a dominant role. For instance, the
truncation to only one PC leads to a mismatch of 5×10−5 for
the amplitude and 7× 10−1 for the phase.

Fig. 3 shows that the overall error after regression (crosses
and plus signs) stabilizes at 6 PCs for the phase with a mis-
match median score of about 10−5. This is the retained num-
ber of PCs after truncation as this indicates the regressor fails
to estimate higher order PC coefficients. For simplicity, the
PCA expansion is truncated to the same number of PCs for
both the amplitude and phase.

Fig. 3. Median mismatch vs number of principal components
retained after PCA truncation. The mismatch is computed af-
ter fitting the amplitude only (phase is exact) for circles and
plus signs, and the phase only for boxes and crosses. Circles
and boxes represent mismatches solely due to the PCA trun-
cation whereas crosses and plus signs represent mismatches
due to the overall model. The dashed line indicates the se-
lected PC truncation level at 6 PC.

4.2.2. Feature selection

Different feature combinations were tested and compared
through their mismatch median value and dispersion. Promis-
ing sets of features were first pre-selected based on their r2

score [10] obtained for the regression of the first PC of the
phase, which essentially governs the overall performance (see
Sec. 4.2.1). This procedure was performed for subsets that
collect up to 6 parameters from the pool that includes q, M,
χeff and χiz , mi and 1/mi for i = 1, 2.

We found that about twenty feature sets lead to the best
median mismatch of order 10−5. Among those sets, the two
following {χ2z, χeff, M} and {χ1z, χ2z, q, m2} are of par-
ticular interest. The first has the nice property to possess three

features only, similarly to the number of intrinsic physical pa-
rameters. However, the mismatch distribution obtained from
the testing set has much smaller variance with the second fea-
ture set. Using this feature set it is possible to produce many
of the terms that appear in the so-called post-Newtonian ex-
pansion that approximates the signal phase before the final
merger [4] (e.g., the component spins S1z , S2z before nor-
malization, or the reduced mass m1m2/(m1 + m2)), thus
explaining the good performances. Interestingly feature sets
such as {q, χ1z, χ2z} (used in [7]) or {q, χeff, M} (a “nat-
ural” candidate composed of the physically motivated param-
eters) do not perform as well, with a median mismatch of
3× 10−2 and 1× 10−1 respectively.

4.2.3. Maximum order of polynomial features

The feature set {q, m2, χ2z, χeff} is expanded by polynomial
combinations of the initial features up to a maximum order
[10]. The minimum order necessary to achieve best perfor-
mances was determined by cross-validation. We found that a
7th order polynomial feature expansion is sufficient to mini-
mize the median mismatch.

4.3. Accuracy and runtime benchmarking

Fig. 4 shows the mismatch distribution obtained with the test-
ing set using {χ1z, χ2z, q, m2} as feature set. The median
mismatch is 1.8 × 10−5 (average is 6.8 × 10−5) and the 5%
and 95% percentiles are 2.2 × 10−6 and 1.6 × 10−4, resp.
The worst case mismatch is ∼ 10−2. As shown in Fig. 4 we
were not able to reproduce the performances given [7] with
the Schmidt et al. model. Instead we found a median mis-
match of 2.3× 10−3 on the testing set.

No matter which reference is considered ([7] or our repro-
duction here), we obtain an improvement by at least an order
of magnitude compared to the Schmidt et al. model. This
makes the approximation error much smaller than the numer-
ical and modelling error intrinsic to the SEOBNRv4 model
(which is less than 1%) [11], uniformly over the considered
parameter space. Following the rule given in Sec. 3.5, this
corresponds to an applicability range that goes up to SNR ≈
288 (12 in the worst case) which covers the loudest SNR ex-
pected during the up-coming LIGO and Virgo science runs.

We evaluated the speed up factor defined as the ratio be-
tween the runtimes required to compute the original wave-
form model4 (using the LALSimulation software library
[14]) to that of the proposed regression model. To perform
this measurement, a set of 500 waveforms was generated by
drawing the total mass uniformly between 40 and 100M⊙
with the other properties as described in Sec. 4.1. The me-
dian speed up is measured to be ∼ 102 (comparable to [7]).
This shows that the proposed method can greatly accelerate
parameter estimation with Bayesian samplers [3].

4The initial frequency is set to fmin = 15Hz
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Fig. 4. Mismatch histograms obtained with the proposed
principal component regression model (orange) and that of
Schmidt et al. (purple) [7].

The runtime of the generation with the regression model
is dominated by the interpolation step from the non-uniform
time grid of attributes to the uniform time grid of the user. The
speed up factor could thus be further improved by dropping
the non-uniform time grid (and thus the need for interpola-
tion). Preliminary tests indicate that the same accuracy level
can be obtained without the non-uniform time grid.

5. PERSPECTIVES

This work paves the way to further extensions relevant
to gravitational-wave astronomy, such as the inclusion of
higher/subdominant modes other than (ℓ = 2,m = ±2).
Another important extension is the case of precessing bina-
ries (with arbitrary, misaligned spins) leading to arbitrarily
polarized waveforms (not necessarily circularly polarized as
it is the case here). In this more complex case with more
input parameters and a larger waveform variability, fast and
highly accurate modelling is still an open problem.

While the method presented here is evaluated in the con-
text of gravitational-wave astronomy, it applies in principle to
any area that involves chirp signals (see e.g., [15] for exam-
ples). One of the lessons learned from this study is that prag-
matic regression approaches based on off-the-shelf tools may
provide better results than more sophisticated approaches. A
judicious choice of features appears critical to optimize the
approximation accuracy.
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[11] A. Bohé et al., “Improved effective-one-body model of
spinning, nonprecessing binary black holes for the era
of gravitational-wave astrophysics with advanced detec-
tors,” Phys. Rev. D, vol. 95, pp. 044028, 2017.

[12] T. Hastie et al., The elements of statistical learning,
Springer, 2nd edition, 2017.

[13] K. Chatziioannou et al., “Constructing Gravitational
Waves from Generic Spin-Precessing Compact Binary
Inspirals,” Phys. Rev. D, vol. 95, no. 10, pp. 104004,
2017.

[14] LIGO Scientific Collaboration, “LIGO Algorithm Li-
brary - LALSuite,” 2018, DOI: 10.7935/GT1W-FZ16.

[15] P. Flandrin, “Time-frequency and chirps,” in Wavelet
Applications VIII, Orlando, US, 2001, vol. 4391.

1535


