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ABSTRACT

In this study, we present TransformNILM, a novel Trans-
former based model for Non-Intrusive Load Monitoring
(NILM). To infer the consumption signal of household appli-
ances, TransformNILM employs Transformer layers, which
utilize attention mechanisms to successfully draw global
dependencies between input and output sequences. Trans-
formNILM does not require data balancing and operates
with minimal dataset pre-processing. Compared to other
Transformer-based architectures, TransformNILM instigates
an efficient training scheme, where model training consists of
unsupervised pre-training and supervised model fine-tuning,
thus leading to decreased training time and improved pre-
dictive performance. Experimental results validate Trans-
formNILM’s superiority compared to several state of the art
methods.

Index Terms— Non-intrusive Load Monitoring, NILM,
Transformers, Attention, computational efficiency, class im-
balance

1. INTRODUCTION

Non-Intrusive Load Monitoring (NILM), or energy disaggre-
gation, is an efficient and cost effective framework to reduce
energy consumption [1], where the aggregate power con-
sumption signal of a household is decomposed into the power
signals of the respective domestic appliances. Solving the
NILM problem has been studied in various works.Some of
the most successful utilize deep learning structures [2]–[4] to
extract the individual appliance consumption patterns. Even
though these techniques demonstrate good performance, there
are some limitations and challenges.

Challenge 1: Recurrent neural networks (RNN), Long
Short-term Memory (LSTM), bidirectional LSTM (BiLSTM)
and gated recurrent unit (GRU) networks are considered state
of the art NILM approaches [1], [5]–[7]. These techniques
utilize recurrent mechanisms [1] to extract worthwhile infor-
mation and discard useless parts of the signal. Therefore, lo-
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cal dependencies are more powerful than global ones, and
infrequent, non-regularly appearing event information fades
over time. In order to maintain the important details, data
balancing is a necessary prerequisite, since the datasets are
skewed with sparce appliance activations, in the sense that
the appliance run-time is noticeably shorter than the time it
is switched off. Most of the aforementioned studies deploy a
pre-processing strategy to handle data balancing properly [5].

Challenge 2:
Convolutional Neural Network (CNN)-based architec-

tures have significantly advanced towards accurately cap-
turing long range temporal dependencies in time series [8],
[9]. CNN-based solutions that tackle NILM-related chal-
lenges have been proposed in various works [3], [10]. These
networks combine causal, dilated convolutions with addi-
tional modern neural network improvements, such as residual
connections and weight normalization, to reduce the required
computational power without performance degradation. Even
though temporal CNN structures are capable of capturing
long range temporal dependencies in time series, consider-
able model depth is required.

Transformers [11] have swiftly surfaced across a multi-
ple sequence modeling tasks [12]–[14], thanks to their supe-
rior scaling properties against recurrent architectures, as well
as their ability to instantly and arbitrarily access information
across time. The primary advantage of Transformers stems
from the fact that,contrary to the aforementioned NILM archi-
tectures, a sequence is processed simultaneously, in an order-
invariant way. Transformers process a sequence as a whole
entity, alleviating the risk of neglecting infrequently occur-
ing information. Even though Transformer architectures seem
suitable to NILM challenges, efficiency and computational
complexity issues have limited their applicability [15].

1.1. Our contribution

In this paper, we introduce TransformNILM, a Transformer-
based framework for energy disaggregation. TransformNILM
comprises of two components: (i) the pre-training process,
which is an unsupervised training scheme where only the ag-
gregate power signal is required as input, and (ii) the train-
ing process, where the pre-trained Transformer model is fine-
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Fig. 1: Proposed model architecture for TransformNILM’s Generator and Discriminator models.

tuned in a supervised manner to predict the electrical con-
sumption of the chosen domestic appliance. This process
leads to an efficient fast Transformer framework for energy
disaggregation. TransformNILM’s comparative advantages
are summarized below:
Learns long-range temporal dependencies. Learning tempo-
ral dependencies is a challenging task, where the model often
may forget the first part of the sequence before finishing its
processing. TransformNILM utilizes attention mechanisms
and is able to identify complex dependencies between input
sequence elements regardless of their position.
Handles imbalanced datasets. Our experiments demonstrate
that the combination of unsupervised pre-training process
with downstream task fine-tuning creates a practical NILM
solution that successfully handles dataset imbalance. This is
a comparative advantage against the existing NILM state of
the art models, where data balancing is usually required to
achieve good performance.
Is an efficient and fast Transformer. TransformNILM com-
bines a Generator and a Discriminator model to create a
computationally efficient unsupervised pre-training process,
which significantly decreases the required training time com-
pared to other Transformer architectures without affecting
model performance.

2. TRANSFORMNILM: AN EFFICIENT
TRANSFORMER FOR NILM

TransformNILM proposes an efficient model training proce-
dure for energy disaggregation. To properly formulate the
task, let a household contain M appliances and i be the in-
dex indicating the i-th appliance (i = 1, . . . ,M ) [16]. In a
NILM framework [17], at any given time t, the total power
consumption x is expressed as the sum of the power con-
sumption yi, ∀ i = 1, ...,M of the individual appliances,
x(t) =

∑M
i=1 yi(t)+ϵnoise(t), where ϵnoise describes a noise

term. Our goal is to solve the inverse problem and, given the
aggregate power signal x, estimate the appliance consump-
tion patterns yi. NILM is therefore formulated as a highly un-
determined blind-source separation problem, since there are
infinite combinations of yi that reconstruct x.

TransformNILM utilizes the Generator/Discriminator
model concept that was first introduced in Generative Ad-
versarial Networks (GAN) [18], where two models compete
against each other during training. A key difference in our
approach is that training is not conducted adversarially. In-
stead, model training is split into a pre-training and a training
routine. Generator and Discriminator cooperate during pre-
training in an unsupervised way to maximize performance in
the training stage [19], where the Discriminator is fine-tuned
to estimate the individual appliance signal.

As illustrated in Figure 1, both Generator and Discrimina-
tor share the same architecture. The input sequence data en-
ters the model. As a first step, a 1D-convolutional layer along
with a squared-average pooling layer are used for feature ex-
traction. Then, the data sequence is added to a positional em-
bedding and passed to a series of Transformer layers. The
Transformer output is deconvoluted and passed through two
linear layers to produce the model output sequence data.

2.1. TransformNILM’s unsupervised model pre-training
process

Utilizing a model pre-training procedure is common strat-
egy in various Transformer architectures [14], [15]. In such
approaches, some values from the input signal are replaced
during the unsupervised pre-training phase, while the model
is then further subsequently fine-tuned to adapt to any down-
stream task. However, only a small fraction of the data is
properly utilized for model training, as the loss function [14],
[15] is calculated only considering the replaced positions.
Even though the pre-training technique is interesting, we ar-
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Fig. 2: Overview of TransformNILM’s model training routine.

gue that a more data efficient strategy, that does not ignore
most input values, could yield a higher performance.

TransformNILM’s efficient pre-training approach is illus-
trated in Figure 2. Contrary to the aforementioned traditional
Transformers approaches, which make use of a single Trans-
former model, TransformNILM consists of a Transformer-
based Generator and Discriminator. In our approach, we re-
place a certain percentage of the aggregate sequence values
x ∈ RN and create a masked aggregate signal xm. The Gen-
erator takes the masked aggregate signal as input and tries
to reconstruct the original aggregate sequence by predicting
the original signal values at the masked positions. Through
this procedure, the model is forced to understand the interde-
pendencies of the aggregate signal without relying on labeled
data. The Discriminator then receives the Generator estima-
tion and tries to understand which samples were replaced and
which correspond to the original aggregate sequence.

To address the data inefficiency of traditional masked pre-
training mechanisms [15], the Generator loss function consid-
ers only the masked positions, whereas in the Discriminator
loss funcion the whole signal is utilized. The pre-training loss
functions Lgen and Ldisc are defined as:

Lgen =
1

T

M∑
i=1

(x̂i − x)2 +DKL(σ(
x̂

τ
)∥σ(x

τ
))

Ldisc = − 1

N

N∑
i=1

milog(p(ci)) + (1−mi)log(1− p(ci))

(1)
x ∈ RN denotes the aggregate signal, x̂ ∈ RN the Gen-

erator output, m ∈ RN is a binary mask with M masking po-
sitions and xm describes the masked input sequence, while c
is the Discriminator output. Finally, τ is a hyperparameter to
control softmax function (σ) temperature. The Generator loss
function is formulated as the combination of Mean Squared
Error (MSE) and Kullback-Leibler Divergence (DKL), while

Binary Cross-Entropy (BCE) loss is implemented in the Dis-
criminator loss function.

In terms of dataflow, the aggregate signal x is masked to
create xm which is given as input to the Generator. The Dis-
criminator receives the Generator output x̂ and predicts which
values were replaced and which correspond to the original
signal, thus creating the vector c. This process can be sum-
marized as:
x → xm → Generator → x̂ → Discriminator → c

2.2. TransformNILM supervised model training process

Conceptually, the pre-training process can be seen as a tech-
nique to boost the performance of the model through a a task-
specific weight initialization. In the training phase, the Gen-
erator is discarded and the Discriminator is re-trained to pro-
duce the appliance signature. Since the model’s objective
changes, a different loss function, fitting to the energy disag-
gregation problem, is required. The Discriminator loss func-
tion is formulated in Equation 2.

L(y, s) = Lgen(y) +

N∑
i=1

log(1 + exp(ŝisi))

N
+

λ

N

∑
i∈O

|ŷi − yi|

(2)
λ is a hyperparameter used to control the impact of the

absolute error stemming from the set O of incorrectly pre-
dicted samples when the appliance was turned on. The loss
function also considers the appliance ground truth status, as
well as the on-off status s of the predicted consumption sig-
nal. The dataflow during training is simpler. The aggregate
signal x is given as input to the Discriminator, which pre-
dicts the individual appliance consumption pattern y, as in:
x → Discriminator → y
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Device Model MRE MAE Acc. F1

Fridge
(F)

GRU+ [7] 0.901 39.54 0.636 0.401
LSTM+ [7] 0.956 43.74 0.573 0.174
CNN [9] 0.758 29.20 0.772 0.718
BERT4NILM [15] 0.732 25.49 0.813 0.766
TransformNILM 0.710 23.11 0.836 0.802

Washer
(W)

GRU+ [7] 0.662 68.65 0.342 0.018
LSTM+ [7] 0.067 15.66 0.938 0.150
CNN [9] 0.094 11.90 0.913 0.173
BERT4NILM [15] 0.040 6.98 0.966 0.325
TransformNILM 0.012 5.22 0.997 0.915

Microwave
(M)

GRU+ [7] 0.014 6.41 0.996 0.266
LSTM+ [7] 0.014 6.55 0.995 0.060
CNN [9] 0.014 6.36 0.995 0.341
BERT4NILM [15] 0.014 6.57 0.995 0.014
TransformNILM 0.013 6.28 0.996 0.277

Dishwasher
(D)

GRU+ [7] 0.035 38.42 0.977 0.639
LSTM+ [7] 0.033 36.36 0.976 0.605
CNN [9] 0.069 25.43 0.947 0.560
BERT4NILM [15] 0.049 16.18 0.966 0.667
TransformNILM 0.027 18.96 0.983 . 0.817

Table 1: Performance comparison, UK-DALE

3. EXPERIMENTAL RESULTS

To compare our results, we chose two open-source datasets,
UK-DALE [20] and REDD [21], and train the model on the
fridge, washer/dryer, microwave and dishwasher. For valida-
tion, we utilized state of the art models that are based on dif-
ferent architectures. We adopted two recurrent approaches,
GRU+ and LSTM+ [7], a convolutional neural network [9]
and a transformer-based model [15]. To evaluate model per-
formance, we used four widely used metrics , namely Mean
Relative Error (MRE),Mean Absolute Error (MAE), Accu-
racy and F1-score. The latter is recorded to assess the model’s
ability to address class imbalance. To assess their generaliza-
tion capabilities, all models were tested on unseen data, from
a house of the dataset not used during training.

Fig. 3: Transformer models training time comparison

Tables 1 and 2 present the experimental results for UK-
DALE and REDD respectively.TransformNILM surpasses the
comparative models in most of the appliances. The most no-
table performance improvement was noted in the washing ma-
chine. While all other models fail to accurately predict the

Device Model MRE MAE Acc. F1

Fridge
(F)

GRU+ [7] 0.829 44.28 0.794 0.705
LSTM+ [7] 0.841 44.82 0.789 0.709
CNN [9] 0.822 35.69 0.796 0.689
BERT4NILM [15] 0.806 32.35 0.841 0.756
TransformNILM 0.823 32.47 0.875 0.799

Washer
(W)

GRU+ [7] 0.090 27.63 0.922 0.216
LSTM+ [7] 0.020 35.73 0.989 0.125
CNN [9] 0.042 36.12 0.970 0.274
BERT4NILM [15] 0.022 34.96 0.991 0.559
TransformNILM 0.016 23.07 0.997 0.902

Microwave
(M)

GRU+ [7] 0.059 17.72 0.988 0.574
LSTM+ [7] 0.058 17.39 0.989 0.604
CNN [9] 0.060 18.59 0.986 0.378
BERT4NILM [15] 0.057 17.58 0.989 0.476
TransformNILM 0.056 16.41 0.990 0.611

Dishwasher
(D)

GRU+ [7] 0.042 25.29 0.955 0.034
LSTM+ [7] 0.056 25.25 0.956 0.421
CNN [9] 0.053 25.29 0.953 0.298
BERT4NILM [15] 0.039 20.49 0.969 0.523
TransformNILM 0.050 24.05 0.969 0.655

Table 2: Performance comparison, REDD

on-off status of the appliance, indicated by the low F1 score,
TransformNILM can capture the status changes of the wash-
ing machine and surpasses all models by a wide margin.

In UK-DALE, TransformNILM achieves performance in-
crease for all appliances and adequately handles imbalanced
data. The low F1-score of the microwave can be explained by
the extended sparsity of the data, since activations span over
only some minutes. The performance of TransformNILM is
higher than the other models on REDD as well. Comparing
the performance of the model on an appliance level between
both datasets, we see that the performance declines slightly
on REDD. UK-DALE contains more appliance activations at
a similar ratio of positive-negative samples. The higher num-
ber or training samples in UK-DALE helps the model to better
capture the interdependencies between the data.

Overall, the introduction of an efficient pre-training tech-
nique leads to both performance and training time improve-
ments, thus making TransformNILM a fast and efficient en-
ergy disaggregation Transformer architecture. On average,
TransformNILM required 42% reduced training time than the
other Transformer-based model (BERT4NILM).

4. CONCLUSION

TransformNILM is an efficient fast Transformer for NILM
that outperforms state-of-the-art models without employing
a data balancing approach. Averaging across all appliances,
TransformNILM attains a performance boost across all met-
rics in both datasets,while requiring significantly less training
time than BERT4NILM, making our approach superior both
in computational efficiency and performance.
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