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Abstract—Malicious customers hack into their smart meters
to reduce their electricity bills using various cyberattack types.
Such actions lead to financial losses and stability issues in
the power grid. Existing research on machine learning-based
detection offers promising detection performance. However, such
detectors have been tested on a single type of cyberattacks
and report performance accordingly, which is not a realistic
setup since malicious customers may inject different types of
cyberattacks. In this work, we examine the robustness of state-of-
the-art machine learning-based electricity theft detectors against a
combination of false data injection attacks (FDIAs). Specifically,
we inject traditional, evasion, and data poisoning attacks with
low, medium, and high injection levels then report the detection
performance. Our results show that sequential ensemble learning-
based detection offers the most stable detection performance that
degrades only by 5.3% when subject to high injection levels of
FDIAs compared to 15.7−18.5% degradation rates for the stand-
alone detectors.

Index Terms—Electricity theft, FDIAs, cyber-attacks, smart
grids, robust detection, malicious samples.

I. INTRODUCTION

In the United States, electricity thefts lead to financial losses
of $6 billion annually [1]. Additionally, inaccurate measure-
ments lead to incorrect decisions, which may overload the
power grid [2]. To overcome this, utility companies employ
advanced metering infrastructures (AMIs) in which smart me-
ters regularly report customers’ energy consumption. Yet, such
embedded systems are still vulnerable to various cyberattack
types that customers perform in order to reduce their electricity
bills. Specifically, malicious customers can launch false data
injection attacks (FDIAs) to manipulate the reported values of
their energy consumption readings and hence reduce their bills.

A. Related Work

Simple FDIAs reduce the reported energy consumption
values via partial reduction or selective bypass techniques
[1]. Different machine learning approaches have been adopted
to detect such attacks including shallow and deep learning-
based detectors. Shallow detectors include a detector based
on an auto-regressive integrated moving average (ARIMA)
model, which presented a detection rate (DR) of 89% [3].
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Also, a multi-class SVM-based detector provided a DR of
94% [1]. Additionally, deep detectors based on neural networks
have been investigated. For example, a deep feedforward
neural network-based detector offered a DR of 92% [4]. Also,
deep recurrent neural networks (RNNs) detectors presented
DRs of 93% [5]. Moreover, a detection mechanism based
on deep vector embeddings offered a detection rate of 95%
[6]. Furthermore, deep autoencoder-based anomaly detection
provided detection rates of 81 − 95% [7], [8], [9]. Other
studies investigated the impact of more complex cyberattack
types including evasion [10] and data poisoning attacks [11]
on detectors that are either stand-alone or based on sequential
ensemble learning (SEL). The SEL-based detector provided
a stable detection performance of 90.1% and 92.2% when
subject to high levels of evasion and data poisoning attacks,
respectively [10], [11].

B. Contributions

One major limitation in the studies above is that they are
only tested against a single type of electricity theft attack (i.e.,
either simple, data poisoning, or evasion) regardless of the
attack complexity. However, in reality, malicious customers
may carry out more than one type of cyberattacks. Until now,
reports in the literature have not investigated the robustness
of machine learning-based electricity theft detectors against a
comprehensive list of cyberattack types combined together. To
close this gap, we carry out the following contributions.

• To mimic the attacker’s behavior that is carrying out
various cyberattack types, we launch three different types
of attacks, namely, simple, evasion, and data poisoning
attacks that consist of a comprehensive list of cyberattack
functions.

• Using a dataset of real electricity reports, we generate the
cyberattacks. Then, we study the impact of such attack
types under different injection levels throughout a set of
experiments. We start with low injection levels where
malicious samples from all attacks represent 15% of the
dataset. Then, we increase the injection levels to medium
(25%) and high (50%) injection levels to quantify the
robustness of the electricity theft detectors accordingly.

• We examine a wide variety of stand-alone electricity
theft detectors that have different properties including
shallow/deep structure, static/dynamic architecture, and

1541ISBN: 978-1-6654-6798-8 EUSIPCO 2022



supervised/unsupervised training nature. These detectors
are ARIMA, single and double-class SVMs, feedforward,
long-short-term-memory (LSTM), and autoencoder with
attention (AEA). Our simulation results imply that, with
high levels of FDIAs, the stand-alone detectors suffer
from performance degradation of 15.7− 18.5%. We also
examine the performance of an SEL-based detector that
combines AEA, LSTM, and feedforward neural networks
sequentially, which offers stable performance with a
degradation rate of 5.3%.

The rest of this paper is organized as follows. Section II
introduces the dataset and the cyberattacks. Section III presents
the detectors. Section IV discusses the experimental results.
Section V concludes the paper.

II. DATASET PREPARATION

This section presents the electricity consumption dataset
used in the study. We also introduce different types of FDIAs.

A. Benign Dataset
For detector training and testing, we utilize a dataset adopted

from the publicly available Irish Smart Energy Trial dataset
[12]. It contains readings during a year and a half from 3, 000
smart meters installed at customer premises that report readings
in 30-minute intervals. Let Ec(d, t) denote an entry of matrix
Ec that depicts an actual electricity consumption value for
customer c on day d during time t. The dataset of [12] presents
readings from honest customers, which means that Ec(d, t) and
the reported readings Rc(d, t) are equal.

B. Malicious Dataset
The malicious portion of the dataset contains comprehen-

sive sets of attacks that are generated from three different
attack groups using the FDIA approach [1] where Rc(d, t) ̸=
Ec(d, t). The first group contains simple attacks in which
malicious customers launch either selective bypass, partial
reduction, or price-based load control attacks. The second
group contains evasion attacks including fast gradient sign
method (FGSM), basic iterative method (BIM), and k-nearest
neighbor BIM (KNN-BIM), where customers inject adversarial
samples to reduce their readings and also fool the detector. The
third group contains data poisoning attacks where the detector
is falsely trained on mislabeled data.

1) Simple Attacks: In this group of attacks, malicious cus-
tomers carry out the following six attack functions belonging
to three types to reduce their electricity bills.

a) Selective Bypass: This is represented by an attack
function where malicious users selectively report zero energy
consumption Rc(d, t) = 0 during a specific time interval
[ti(d), tf (d)] and report the actual consumption Rc(d, t) =
Ec(d, t) outside [ti(d), tf (d)].

b) Partial Reduction: This is represented by two attack
functions where malicious customers reduce a fraction of
the reported electricity consumption either by a small con-
stant value α where Rc(d, t) = αEc(d, t) or by a dynamic
random value β = rand(0.1, 0.8) such that Rc(d, t) =
βc(d, t)Ec(d, t).

c) Price-based Load Control: This attack is applicable in
cases where the tariff is different throughout the day, and is
represented by three attack functions. In the first, malicious
customers report a constant consumption value E[·] during
the day according to their average consumption such that
Rc(d, t) = E[Ec(d)]. Reporting a constant value may be easily
spotted. Thus, the second function adopts dynamic fraction β
such that = Rc(d, t)βc(d, t)E[Ec(d)]. The last function flips
the readings such that higher consumption values are reported
within the low tariff periods where Rc(d, t) = Ec(d, T−t+1).

Each of the simple attacks is applied to Ec, which results in
six malicious matrices per Ec. As a result, rows represent one
sample of Ec(d, t) with binary labels zero or one to denote
benign or malicious usage, respectively.

2) Evasion Attacks: Evasion attacks are more sophisticated
where malicious (adversarial) samples are crafted to reduce
the energy bill and also fool the detector, i.e., being identified
as benign. Herein, adversarial samples are created using three
evasion attack functions, namely, FGSM [13], BIM [14], and
BIM-KNN [10] using a white-box setting [15]. The attacks
below reduce Ec using small perturbation values ϵ that are
either constant, bounded, or unbounded.

a) FGSM Attack: The model’s gradients are used for the
generation of the adversarial samples in the FGSM attack.
Specifically, getting ϵ for a target reading Ec(d, t) requires the
detection model’s gradients of the loss function so that a similar
adversarial sample Radv

c (d, t) is generated with maximum loss.1

This process is performed according to a one-step gradient
update in the same direction of the gradient’s sign at each
time step where

Radv
c = Ec − ϵ sign(∇Ec

J(ϕ,Ec,y)). (1)

In (1), sign denotes the signum function. ∇, J , ϕ denote
the detection model’s gradients, loss function, and parameters,
respectively. y refers to the correct label.

b) BIM Attack: The BIM attack expands the FGSM attack
through launching it across time steps using a small ε. After
each iteration, BIM clips the attained time series elements [14].
This makes ε change in each iteration, so it becomes better
at fooling the detector. The generated samples have dynamic
ε values that are limited by a maximum perturbation value ε̂
resulting in generating samples with matching patterns with the
original reading. BIM creates adversarial samples as follows

Radv
c (d, t+ 1) = ClipEc,ε̂

Radv
c − ε sign(∇EcJ(ϕ,R

adv
c ,y)),

(2)
where ε̂ = 0.1 and clipping is performed after each time step
t. This ensures that the reported and original readings have
matching patterns with a lower chance of being noticed.

c) BIM-KNN Attack: BIM-KNN extends BIM by apply-
ing it to k neighboring readings where the value of ε varies
based on the mean value of a target sample Ec(d, t) as well as
the k neighboring readings. For example, assuming that k = 2,
for a given series of readings, [Ec(d, t − 1), Ec(d, t), Ec(d −
1, t + 1)] with mean Mc, ε = Mc Ec(d, t). Therefore,

1t and d are dropped from Ec(d, t) and Radv
c (d, t) for simplicity.
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generating samples using BIM-KNN is similar to (2) without
the bounding constrain on ε̂. This way, ε is adjusted at each
reading because each reading presents different neighboring
readings with distinct mean values.

3) Data Poisoning Attacks: Data poisoning refers to cases
where the detector is trained with the implicit assumption that
the training labels are correct [16]. However, this assumption is
not always valid. Consider the case where customers conduct
electricity theft and are not being detected while their data
is being used by the utility company to train the electricity
theft detector. In this case, the detector will be dealing with
such data as if it is benign data, when in fact, it is malicious.
This results in incorrect labeling, which means that a malicious
sample will be falsely assigned a benign label, which leads to
data poisoning attacks [11]. Data poisoning shifts the decision
boundaries of the detector, which degrades its capability of
differentiating between benign and malicious samples.

C. Attack Levels

To investigate the impact of FDIAs on electricity theft
detectors, we generate attacks using the aforementioned at-
tack functions and inject them at three different levels in
separate experiments. In the low, medium, and high injection
level cases, cyberattacks represent 15%, 25%, and 50% of
the dataset, respectively. The attack types (i.e., simple, data
poisoning, and evasion attacks) are injected equally in each
case. For example, with low injection levels, each attack type
represents 5% of the dataset.

D. Train and Test Data

For anomaly detectors trained on benign data only, data from
all customers is concatenated then split into train and test sets
with a 2 : 1 ratio. Malicious and benign samples are then
concatenated for the final test. Imbalanced data is resolved
using the adaptive synthetic sampling approach (ADASYN)
[17] where benign samples are over-sampled. After applying
feature scaling, XTR and XTST denote the training and test sets,
respectively. The rest of the detectors are classifiers trained on
both classes. Thus, before applying feature scaling, samples
are concatenated and balanced using ADASYN.

III. DESIGN OF FDIAS DETECTORS

A. Stand-alone Detectors

Below, we present the stand-alone shallow ARIMA and
SVM detectors along with the deep feedforward, LSTM, and
AEA classifier detectors.

1) Shallow Detectors: Shallow detectors employ machine
learning methods that are shallow and do not entirely capture
the intricate patterns forming the electricity readings profile.

a) ARIMA-based Detection: The ARIMA model is a
shallow dynamic anomaly detector trained on benign data to
foresee ensuing electricity usage using minimum foreseeing
mean square error (MSE). If the MSE of a sample is above a
specific threshold value, it is marked as malicious [3].

b) SVM-based Detection: The single class (1-SVM)
model is a shallow static detector trained only on benign
samples, whereas the two-class (2-SVM) detector is trained
on both classes to learn and predict samples during testing.

2) Deep Detectors: Deep detectors employ deep learning
techniques allowing them to apprehend the intricate patterns
behind the electricity reading data.

a) Feedforward-based Detection: Feedforward is a static
2-class classifier that is based on deep neural networks where
information flows in a singular direction without forming loops.

b) LSTM-based Detection: LSTM is an RNN variation
that is a deep dynamic 2-class detector that presents feedback
connections. The LSTM cells hold values over time intervals
where input, output, and forget gates control the information
flow. Hence, the LSTM model can apprehend the intricate and
temporal correlations within the time-series data.

c) AEA-based Detection: Autoencoders define anomalies
based on the reconstruction error ∆. Autoencoders are used
for dimensionality reduction during the encoding and for data
reconstruction during the decoding [7]. ∆ is the difference
between the input data and reconstructed data. AEA is trained
on benign data to obtain the parameters that minimize ∆.
The AEA model comprises an LSTM-encoder and decoder
along with an attention layer La [9] as demonstrated in Figure
1. An electricity reading is fed into the LSTM-encoder and
encoded into a hidden state. The output is then passed to
La that assigns higher importance to time steps with higher
effects on the output [18]. La produces a context vector
acquired via an alignment scoring and softmax functions along
with a multiplication layer. The LSTM-decoder receives the
concatenation of the scoring function and reconstructed output.

B. Ensemble Learning-based detection

SEL-based detection works by sequentially combining dif-
ferent parts where the output of one part is passed on to the next
one for further feature extraction and processing [10], as shown
in Fig. 1. Hence, we also examine the robustness of an SEL-
based model that stacks an input layer, LSTM-based AEA, ad-
ditional LSTM layers, fully-connected layer, and output layer.
The rationale behind this order is to conduct further processing
on the AEA’s reconstructed output so that more informative
features are learned and the temporal correlations are better
captured. This enhances the overall detection performance.
Afterwards, the LSTM output is passed and reshaped by the
fully connected layer so that the final decision is made at the
output layer.

C. Detector training

Using iterative gradient descent optimization, the optimal
values of bias and weights are learned during training with the
goal of minimizing the cross-entropy cost function:

C = min
ϕ

−1

|XTR|
∑
XTR

{yT(x) ln(ỹ) + (1− yT(x)) ln(ỹ)}, (3)

where ϕ denotes the model parameters, |XTR| represents all
training samples, ỹ depicts the calculated label, and T denotes
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Fig. 1. Illustration of the sequential ensemble learning-based detector.

the transposition operation. We split XTR into equally sized
mini-batches where feedforward and backpropagation passes
are executed. In the feedforward pass, the samples within mini-
batch are run through all the layers. In the backpropagation
pass, mini-batches are used to determine the cost function’s
gradient with respect to the network weights. The gradients are
utilized to determine the biases and weights at each iteration.

D. Hyperparameter Tuning

Tuning the hyperparameters aids in optimizing the detection
performance. Hence, we carry out sequential grid-search hy-
perparameter tuning in which each hyperparameter is selected
in a separate stage from a predefined list until the best detection
rate is achieved [19].

IV. EXPERIMENTAL RESULTS

This section presents the experimental setup in terms of the
used optimal hyperparameters and detection threshold values
along with the numerical results of the detection performance.

A. Experimental Setup

For training, we adopt Keras sequential API with 50 epochs
and a batch size of 100. Shallow and deep detectors take 1.5
and 3.5 hours to train offline, respectively. Online real-time
detection takes ≤ 2 seconds.

1) Optimal Hyperparameters: After applying sequential
grid-search tuning, the ensuing optimal hyperparameters are
obtained. For ARIMA, the degree of differencing and moving
average values are 1 and 0, respectively. For both SVM
detectors, the optimal kernel and gamma are scale and sig-
moid, respectively. The feedforward model has 6 layers with
500 neurons, Adamax optimizer, no dropout rate, 3 weight
constraint, ReLU hidden activation function, and Sigmoid
output activation function. The LSTM model has 8 layers
with 300 cells, Adam optimizer, dropout rate of 0.2, and
weight constraint of 5. ReLU and Softmax hidden and output
activation functions are used, respectively. The AEA’s encoder
has 3 layers with (500, 300, 200) LSTM cells that are mirrored
in the decoder side, SGD optimizer, no dropout rate, 1 weight
constraint. Sigmoid is utilized for the hidden and output
activation function. The SEL detector has the same AEA and

LSTM hyperparameters along with a fully connected layer with
500 neurons, adam optimizer, no dropout rate and 1 weight
constraint, and ReLU and Sigmoid for the hidden and output
activation functions, respectively.

B. Detection Threshold

For detectors trained only on benign classes, we compare the
true test labels Y TST with the predicted labels Y PRED to get the
confusion matrix. Producing Y PRED requires a threshold value
τ to be compared with the MSE/∆ to separate benign from
malicious samples. τ is determined using the receiver operating
characteristic (ROC) curve’s interquartile range median. Scores
greater than τ denote malicious samples. For ARIMA, 1-SVM,
and AEA, the optimal τ is 0.57, 0.55, and 0.48, respectively.

C. Evaluation Metrics

A true positive (TP) is a truly detected malicious sample.
A true negative (TN) is a truly detected benign sample. A
false positive (FP) is a benign sample that is falsely detected
as malicious. A false negative (FN) is a malicious sample
that is falsely detected as benign. To evaluate the performance
of the examined detectors, we use three evaluation metrics,
namely, the true positive rate (TPR), false positive rate (FPR),
and accuracy (ACC). TPR provides the rate of truly detected
malicious samples to all samples such that TPR = TP/(TP +
FN). FPR determines benign readings that are falsely detected
as malicious such that FPR = FP/(FP+TN). ACC shows how
well the model is able to mark benign and malicious samples
such that ACC = (TP + TN)/(TP + TN + FP + FN).

D. Performance Evaluation

Table I shows the detection performance of the examined
electricity theft detectors when subject to simple, data poi-
soning, and evasion FDIAs under different injection levels.
Compared to low injection levels, the detection performance
of the shallow benchmark detectors reduces by 7.5 − 8.1%
with medium injection levels and 17.9 − 18.5% with high
injection levels. Compared to shallow detectors, deep stand-
alone detectors are around 2% more robust, where the perfor-
mance reduction is 6.7 − 7.1% with medium injection levels
and 15.7 − 16.6% with high injection levels compared to
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TABLE I
IMPACT OF FDIAS ON ELECTRICITY THEFT DETECTORS.

FDIAs Injection Levels
Model Metric 15% 25% 50%

ARIMA
TPR 71.4 63.2 52.7
FPR 28.1 36.4 46.6
ACC 71.3 63.5 53.0

1-SVM
TPR 74.8 67.1 56.8
FPR 25.5 33.0 43.6
ACC 75.0 67.6 57.1

2-SVM
TPR 76.7 69.2 59.1
FPR 22.3 30.4 40.5
ACC 76.7 69.7 58.6

feedforward
TPR 80.9 73.7 64.1
FPR 19.6 26.9 36.1
ACC 80.5 73.6 64.1

LSTM
TPR 83.2 76.2 66.1
FPR 15.6 22.7 32.6
ACC 83.2 76.5 65.7

AEA
TPR 87.1 80.5 71.3
FPR 12.5 20.4 28.9
ACC 86.8 81.1 71.8

SEL
TPR 92.7 90.4 87.6
FPR 5.5 8.1 11.2
ACC 92.3 90.2 87.3

the low injection levels. This enhancement is due to their
deep stacked structure that apprehends the intricate patterns
within the readings. Also, the LSTM and AEA present a
dynamic structure that considers the temporal correlations of
the readings, hence, offering better results.

The SEL-based detector offers the most stable performance
among all injection levels. Superficially, compared to low
injection levels, the detection performance of the SEL model
reduces only by 2.3% with medium injection levels and 5.3%
with high injection levels. This means that it is more robust
against deep stand-alone detectors by 10%. This is mainly
due to its deep and dynamic structure as well as the further
processing within the different blocks.

V. CONCLUSION

This paper examined the robustness of electricity theft
detectors against comprehensive sets of cyber attacks combined
together. The impact of selective bypass, partial reduction,
and price-based load control simple attacks along with more
sophisticated FGSM, BIM, and BIM-KNN evasion attacks as
well as data poisoning attacks was investigated. The attacks
were injected using the FDIAs method with low, medium, and
high injection levels. Several stand-alone detectors including
shallow ARIMA and SVMs along with deep feedforward,
LSTM, and AEA were investigated. At high FDIA levels,
detection performance degrades by 15.7−18.5%. The impact of
FDIAs on an ensemble learning-based detector that combines
deep detectors sequentially was also studied. Due to its deep
and dynamic structure, the ensemble detector exhibits a stable
performance with 5.3% degradation at high FDIA levels.
While offering promising results, further improvements will
be investigated in the future to offer more stable performance
to ensemble learning detectors.
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