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Abstract—In the case of using standard methods for 

estimating the frequencies of short signals, large errors can be 

obtained due to the large distance between the spectral lines. To 

solve the problem, we propose a learning-based approach to 

identifying frequencies at an inter-line position in the spectrum. 

The proposed approach uses data obtained by applying the DFT 

to a sinusoidal signal generated with known frequency and 

amplitude and of different lengths. In this way, the highest 

values of the amplitude in the spectrum are placed on a curve 

close in shape to that of the sinc function. To always have three 

points on the main lobe, we double the length of the signal by 

zero-padding. For each signal length, the amplitudes of the three 

points on the main lobe are determined, which is the input for 

training the ANN. The distance between the frequency indicated 

on the spectral line of the left point and the generated frequency 

is used as the target. The numerical results show that the 

proposed approach exceeds the accuracy of most current 

methods, the percentage errors resulting from the tests being in 

the order of thousands. By using normalized training data, the 

resulting network can estimate the correction time regardless of 

the value of the frequency or amplitude of the evaluated signal.  

Keywords—frequency estimation, zero padding, Discrete 

Fourier Transform, Artificial Neural Network, sinc function 

I. INTRODUCTION 

Accurate frequency estimation is a necessity in several 
engineering domains, such as communications [1], radar or 
sonar [2], detection of mechanical or structural faults [3]. It is 
very important also in several applications in the medical 
field, where the monitoring of the frequency changes of some 
biosignals acquired from the human body have a decisive role 
in diagnosis [4]. 

Standard frequency estimation methods are the Discrete 
Fourier Transform (DFT) and the Fast Fourier Transform 
(FFT). These methods work well for numerous applications 
but can fail if short signals with low frequency are analyzed 
because of the rough resulting frequency resolution. The large 
distance between two consecutive spectral lines makes the 
chance that the position of a spectral line matches the actual 
frequency to be small. A consequence is the so-called spectral 
leakage phenomenon. 

Different methods to increase the accuracy of the 
frequency estimate are proposed in the literature. One of them 
is finding the maximum of the curve that crosses two or three 
points in the DFT spectrum found by interpolation [5-12].  An 
alternative interpolation method is zero-padding [13]. A 
comprehensive review is given in [14]. 

More advanced methods imply analyzing the spectra of the 
signal with different time lengths. The advantage of 
shortening the signal consists in changing the position of the 
spectral lines and thus obtaining denser lines in the spectrum 
by overlapping numerous spectra. The trim-to-fit strategy 
involves adjusting the length until the amplitude at one of the 
spectral lines presents a maximum. This means the leakage is 
minimal, and the real frequency is found [15]. Other 
interpolation methods imply selecting three magnitudes 
obtained from different spectra obtained by shortening the 
time length [16, 17]. 

Despite the offered advantages, actual methods are either 
not sufficiently accurate, imply high computational costs, or 
cannot be automated. The method proposed herein is simple 
and robust, ensures high accuracy, and requires no human 
intervention. It can be described as follows. First, we develop 
a behavioral model by finding the amplitudes of three points 
of the DFT of a zero-padded harmonic signal with different 
time lengths. In the meantime, we calculate the difference 
between the generated and the obtained frequency. The data is 
normalized and trained with an Artificial Neural Network 
(ANN), which is then used to correct the frequencies 
estimated for measured signals.      

II. THEORETICAL BACKGROUND 

Let us consider the discrete-time sinusoidal signal with the 
initial phase angle zero as a sampled sequence containing 
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In the above equation, A is the amplitude, fR is the 
frequency of the signal, fS is the sampling frequency, N is the 
number of acquired samples, and n is the index of the samples.  

When calculating the DFT, we obtain a set of N frequency-
amplitude pairs. The frequencies are displayed on 
equidistantly distributed spectral lines. The distance between 
two spectral lines, known as frequency resolution, is  
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For each spectral line k = 1…N, the DFT of the signal a[n] 
calculates the amplitude: 
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where j2=-1. 

So, following the Euler formula, an N sample signal a[n] 
can be decomposed into a set of cosine waves with the 
amplitudes contained in the real part Re Ak and a set of sine 
waves with the amplitudes in the imaginary part Im Ak.  

 𝑅𝑒 𝐴𝑘 = ∑ 𝑎[𝑛] 𝑐𝑜𝑠 (
2𝜋

𝑁
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Hence, the amplitude displayed at the k-th spectral line of 
the DFT is calculated as 

 |𝐴𝑘| = √(𝑅𝑒 𝐴𝑘)
2 + (𝐼𝑚 𝐴𝑘)

2 () 

If the signal length is a multiple of the signal period T, all 
amplitudes in the spectrum are zero except the spectral line 
which fits the real frequency fR of the signal. Else, the signal 
cannot be constructed with one sinusoid, and therefore more 
sinusoids with different amplitudes are necessary for its 
construction. In consequence, the spectrum will contain more 
lines with non-zero amplitudes. An example is shown in Fig. 
1, where the red squares indicate the amplitudes Ak-1, Ak, and 
Ak+1 located on the spectral lines k-1, k, and k+1, respectively. 
With k we denoted the spectral line that is closest to the inter-
line position on which the real frequency fR should be 
displayed. The amplitude of the sinusoidal signal is 1.  

 

Fig. 1. The three points in the DFT spectrum of the sine signal 

As it can be observed in Fig. 1, the calculated amplitudes 
approximately belong to a sinc function that has the maximum 
amplitude equal to the signal amplitude. Small differences 
occur because the sinc function is obtained after neglecting 
small quantities [18]. This function has a main lobe extended 
on an interval equal to twice the frequency resolution and 
lateral lobes extended on intervals equal to the frequency 
resolution. There are two spectral lines in the main lobe, and 
one line in each lateral lobe.  

Since the proposed method involves the use of amplitudes 
belonging to the main lobe, we must ensure that the points 
involved meet this condition. To fulfill this condition, we 
lengthen the signal by zero-padding and so we obtain a double 
number of points, all belonging to the same sinc function. The 
dots are represented by green squares in Fig. 2. It can be 
observed that half of the green squares overlap the red squares. 

 

Fig. 2. The denser points in the DFT spectrum of the zero-padded sine 

signal 

Now, we know the maximizer Ak in Fig. 2 and its two 
neighbors Ak-1 and Ak+1 belong to the main lobe. We can also 
calculate the distance between the first point, namely the 
spectral line k-1, and the spectral inter-line where the real 
frequency fR is located. We call this distance correction term 
and denote it δ. The relation between the real frequency fR and 
the frequency estimated at line k-1 is given by  

 ( 1 δ)= − +  = R Rf k f k f  () 

We can simplify (7) by Δf, and thus obtain 

 1 δ= − +Rk k  () 

Hence, the correction term result as 

 1δ −−
=



R kf f

f
 () 

In (9), the term fk-1 represents the frequency estimated at 
the spectral line k-1, thus that of the frequency that has the 
amplitude Ak-1.  

III. CREATING THE DATABASE TO TRAIN THE ANN 

The correction term δ can be obtained by simulation 
involving a signal with known frequency fR and amplitude A. 
To this aim, we generated a signal with A=1 and fR=5 Hz, 
involving N=2149 samples by fS=1000 Hz. This signal is zero-
padded to double its length and consequently the number of 
spectral lines.  

 

Fig. 3. The generated sine signal after zero-padding 
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Fig. 4. A zoom on the main lobe of the DFT spectrum 

Fig. 3 shows the zero-padded signal that was generated 
using a Python application designed to perform rapid calculus. 
The DFT is calculated, and we extract the biggest amplitudes 
that belong to the main lobe, namely Ak-1, Ak, and Ak+1, and the 
frequencies fk-1, fk, and fk+1. A zoom on the main lobe as it is 
displayed by the application is shown in Fig. 4. We can 
observe the three points and the values of the frequencies and 
DFT amplitudes. To ensure the reproducibility of the tests, we 
provide the database generated for training [19].  

From the original signal, we extract two samples at a time 
until we ensure the signal has lost an entire period T. The 
shortest signal contains therefore 2051 samples. This means 
we have generated all possible scenarios. Fig. 5 shows the 
amplitudes of the three points versus the number of samples 
contained in the signal.   

 

Fig. 5. A zoom on the main lobe of the DFT spectrum 

Now, we have all the necessary data to calculate the 
INPUT and TARGET values. The values considered as 
INPUT consist of 120 normalized amplitude values Ak-1/Ak, 
Ak/Ak, and Ak+1/Ak. We perform normalization to achieve 
generality since by normalization we eliminate the signal 
amplitude. 

The values that are taken as TARGET consist of the 
correction terms calculated with (9), knowing that the real 
frequency is fR=5 Hz. Examples of INPUT and TARGET data 
are given in Table 1, while the complete set of data is provided 
in [19]. 

TABLE I.  EXAMPLES OF INPUT AND TARGET DATA 

N 

(samples) 

INPUT TARGET 

Ak-1 Ak Ak+1 δ (-) 

2149 0.34056317 1 0.99144261 1.485 

2147 0.35362327 1 0.97444708 1.465 

2145 0.36667106 1 0.95761995 1.445 

2101 0.64594329 1 0.62834404 1.005 

2099 0.65834327 1 0.61533858 0.985 

2055 0.958326898 1 0.361511871 0.545 

2053 0.97470059 1 0.350551739 0.525 

2051 0.991461997 1 0.339541093 0.505 

 

IV. THE TRAINING OF THE ANN 

Artificial Neural Networks (ANN) are powerful 
information processing systems, composed of simple 
processing units, interconnected, and acting in parallel. 
Usually, ANNs are trained for performing complicated tasks 
while achieving high accuracy. In paper [20] the authors 
present the precision of a feedforward backpropagation 
network that is used for detecting and locating transverse 
cracks. The advantages of using ANNs in damage detection 
applications are presented in the paper [21] where the authors 
achieved a high-frequency estimation by employing an ANN 
using the normalized amplitudes as input data and compared 
its performance to other approximation functions. In more 
recent studies [22] the denoising of measurement data is 
successfully achieved by processing the acquired signal using 
a convolutional neural network. The efficiency of a 
feedforward backpropagation network for the determination 
of the natural frequencies of a Split Ring Resonator is 
presented in [23]. The ANN developed in this paper is a 
feedforward network, trained using a backpropagation 
algorithm. Its architecture is presented in Fig. 6, and the 
metadata parameters are shown in Table II.  

 

Fig. 6. The architecture of the ANN 

Due to the non-linearity of the data used for training and 
for using the ANN in the future with larger amounts of data, 
the number of hidden layers is set to three and the number of 
hidden neurons Nh for each layer is determined considering 
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the number of samples Ns, the number of input Ni and output 
neurons No, and a scaling factor α=3.  
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The accuracy of the parameters used are confirmed by the 
cross-validation process, for which, 15% of the training data 
is used. For testing the ANN, 15% of data is used. 

TABLE II.  NEURAL NETWORK STRUCTURE 

Type of the network Feed-forward backpropagation 

Activation function Hyperbolic Tangent 

Performance validation Mean Square Error 

Training algorithm Bayesian Regularisation 

After the training stage of the network, its precision can be 
evaluated by checking the regression plots shown in Fig. 7. 
These plots illustrate how close the output of the ANN is to 
the actual target values. The error versus epoch for the 
training, validation, and test performances is shown in Fig. 8. 

 

Fig. 7. ANN network training regression 

 

Fig. 8. ANN network best validation performance 

V. TESTING THE ACCURACY OF THE PROPOSED METHOD 

Several simulations involving the PyFEST application 
[16] were performed for short time-signals. The signals are 
generated with the amplitudes A=1 and A=1.5 and the 
frequency fO=5 Hz. Tables III and V present the normalized 
values of the amplitudes in the DFT achieved for different 
signal lengths. The number of samples defining the signal 
length is in the range used for training. Tables IV and VI 
present the normalized values of the amplitudes for signals 
having the length outside the training interval. Note that the 
normalized DFT amplitudes are similar for the two considered 
signal amplitudes, so we can train the network for a single 
signal amplitude without loss of generality. 

By using this normalized training data, the network can 
estimate the correction term δ, whose values are independent 
of the signal amplitude. Thus, the value for obtained frequency 
can be calculated, using the equation  

 1 δ−= + O kf f f  () 

 The achieved values for the estimated frequencies are 
shown in the last column of tables III, IV, V and VI.  

TABLE III.  RESULTS OBTAINED FOR THE TEST DATA INVOLVING THE 

SIGNAL WITH A=1 AND THE LENGTH IN THE TRAINING INTERVAL 

N 

(samples) 

Normalized amplitudes 
Correction 

term 

Obtained 

frequency 

Ak-1 Ak Ak+1 δ (-) fO (Hz) 

2149 0.340563 1 0.9914426 1.4669 4.9957877 

2137 0.418670 1 0.8919170 1.3704 5.0012637 

2119 0.533746 1 0.7533009 1.1819 4.9992683 

2107 0.608741 1 0.6684116 1.064 4.9997626 

2095 0.683195 1 0.5898408 0.946 5.0002387 

2083 0.758982 1 0.517154 0.8277 5.0006482 

2067 0.86712 1 0.426993 0.6629 4.9994918 

2059 0.92666 1 0.383337 0.5839 4.9997328 

TABLE IV.  RESULTS OBTAINED FOR THE TEST DATA INVOLVING THE 

SIGNAL WITH A=1 AND THE LENGTH OUTSIDE THE TRAINING INTERVAL 

N 

(samples) 

Normalized amplitudes 
Correction 

term 

Obtained 

frequency 

Ak-1 Ak Ak+1 δ (-) fO (Hz) 

2043 0.37993 1 0.9409282 1.4289 5.000954 

2031 0.45791 1 0.8440793 1.3056 5.000147 

2017 0.54711 1 0.7382367 1.1621 4.999280 

2005 0.62197 1 0.6542038 1.0437 4.999675 

1991 0.70887 1 0.5642647 0.9054 5.000100 

1979 0.78545 1 0.4934039 0.7864 5.000353 

1965 0.88174 1 0.4157072 0.6417 4.999160 

1953 0.97470 1 0.3505204 0.5397 5.003764 
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TABLE V.  RESULTS OBTAINED FOR THE TEST DATA INVOLVING THE 

SIGNAL AMPLITUDE A=1.5 AND THE LENGTH IN THE TRAINING INTERVAL  

N 

(samples) 

Normalized amplitudes 
Correction 

term 

Obtained 

frequency 

Ak-1 Ak Ak+1 δ (-) fO (Hz) 

2149 0.340563 1 0.991443 1.4669 4.99578 

2137 0.418671 1 0.891917 1.3704 5.001264 

2119 0.533746 1 0.753301 1.1819 4.999268 

2107 0.608741 1 0.668412 1.064 4.999763 

2095 0.683196 1 0.589841 0.946 5.000239 

2083 0.758983 1 0.517154 0.8277 5.000648 

2067 0.867124 1 0.426993 0.6629 4.999492 

2059 0.926664 1 0.383337 0.5839 4.999733 

TABLE VI.  RESULTS OBTAINED FOR THE TEST DATA INVOLVING THE 

SIGNAL AMPLITUDE A=1.5 AND THE LENGTH OUTSIDE THE TRAINING 

INTERVAL  

N 

(samples) 

Normalized amplitudes 
Correction 

term 

Obtained 

frequency 

Ak-1 Ak Ak+1 δ (-) fO (Hz) 

2043 0.379934 1 0.940928 1.4289 5.000955 

2031 0.457914 1 0.844079 1.3056 5.000147 

2017 0.547110 1 0.738236 1.1621 4.999280 

2005 0.621974 1 0.654203 1.0437 4.999675 

1991 0.708871 1 0.564264 0.9054 5.00010 

1979 0.785455 1 0.493403 0.7864 5.000353 

1965 0.881740 1 0.415707 0.6417 4.99916 

1953 0.974709 1 0.350520 0.5397 5.003764 

One can observe from tables III÷VI that the proposed 
approach allows estimating the frequencies accurately, the 
errors being between 0.01% and 0.04%.  

VI. CONCLUSION  

In this paper, we propose a method to accurately estimate 
the frequencies of a signal involving the DFT and ANN. To 
train the network, the method requests a few data that can be 
obtained by determining the DFT amplitudes of a signal with 
a known frequency. This data is used as input data. In addition, 
we determine the distance between the generated frequency 
and the obtained frequency. This data is used as the target in 
the training process. It was shown that, by normalizing the 
amplitudes in the DFT and the error in estimating the 
frequency, we can use the trained network to find the 
correction term for signals with any amplitude and frequency.     

For testing the method, we used signals with a known 
frequency. This permitted calculating the difference between 
the generated frequency and the obtained frequency. The 
results confirmed the accuracy of the method, the errors being 
less than 0.04%. These excellent results were obtained both 
for signals with the length within the range of lengths used for 
training as well as outside this range. 
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