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Abstract— In this research the signals from ground 
surveillance radar audio output are classified using hierarchical 
nonlinear classifier based on Support Vector Machine. Central 
Doppler frequency and spectral width around it are used as 
features. These features are obtained based on spectrogram 
calculated using discrete Fourier transform and spectrogram 
calculated using warped discrete Fourier transform. The 
performance of used features for classification are analyzed 
through classification accuracy. Obtained results show that 
features extracted from the spectrogram calculated using 
warped discrete Fourier transform provide higher classification 
accuracy. 

Keywords— ground surveillance radar, classification, 
spectrogram, Warped Discrete Fourier Transform (WDFT), 
Support Vector Machine (SVM) 

I. INTRODUCTION 

The situational awareness on the battlefield is one of the 
main task of sensors application for military purposes [1]. The 
complexity of the battlefield implies usage of sensors that 
work in the different part of the electromagnetic spectrum: 
radar, visible cameras, thermal cameras, acoustic sensors, etc. 
Each sensor utilization has its advantages and shortcomings. 
Comparing to radars, visible and thermal cameras provide 
higher resolution and they are passive sensors. On the other 
hand, the possibility of working in complex atmospheric 
conditions (rain, fog, snow, etc.) and the higher detection 
range, are advantages of radar sensors. 

The main tasks of ground surveillance radar are detection 
and classification of radar targets. In typical radar systems, 
target detection is fully automatized, while the classification 
is performed based on operator experience [2]. The pulse-
Doppler radar is often used for ground surveillance due its 
relatively simple construction. The signal of a certain 
frequency is emitted by radar and this signal reflects to the 
radar receiver after scattering from a moving object. The 
frequency of the received signal differs from the emitted 
signal frequency due to the Doppler effect. The Doppler 
frequency is the difference of these two frequencies and it is 
linearly dependent on the target velocity. The received 
Doppler signal has additional frequency modulations if other 
parts of the radar targets are moving additionally regarding 
bulk motion. These modulations are named micro-Doppler 
signature and they can be used for radar target classification 

[3]. The signals from the output of the ground surveillance 
radar are time varying. Due this property, time-frequency 
techniques are often used for these signals analysis [4]. In [5] 
the S-method is used for tracking central Doppler frequency 
using Viterbi algorithm. Authors in [6] propose real radar 
signals Doppler frequency tracking using modified B-
distribution. The optimal time-frequency distribution is 
determined in [7] in order to achieve a high energy 
concentration in the time-frequency plane. The features 
calculated using bispectrum are used in [8] for radar target 
classification and the results are compared to the classification 
using features obtained using standard time-frequency 
distributions. 

The spectrogram-based features are often used for ground 
radar target classification. In [9] the signals from the audio 
output of the ground surveillance radar are classified using 
spectrogram projections on time and frequency axis. The 
method for estimation of the human movement using Short-
Time Fourier Transform (STFT) and chirplet transform are 
proposed in [10]. The central Doppler frequency and spectral 
width around it are used as an input in fuzzy expert system 
projected for radar target classification in [11]. The 
concatenated convolutional neural network (CNN) model has 
been proposed that takes the radar signal data and the 
geolocation type as its inputs and performs a binary 
classification to categorize animals and humans in [12]. 
Authors in [13] proposed a novel human activity classification 
method based on motion orientation determining using 
multistatic micro-Doppler signals. A pre-trained CNN is 
utilized as feature extractor whereas the output features were 
used to train a multiclass Support Vector Machine (SVM) 
classifier in [14]. In [15] the features extracted from the 
Doppler spectrogram are used for human activity 
classification using decision-tree structure formed using 
SVM. A novel feature extraction method based on micro-
Doppler signature is proposed to classify ground moving radar 
targets in [16]. These features are central Doppler frequency 
and spectral width around it and these two features are 
obtained using spectrogram. In [17] the AlexNet-inspired 
CNN model are trained on the real radar targets spectrograms 
and the algorithm is implemented in real-time with 
classification accuracy of 90%. A deep 3-layer convolutional 
encoder is used in [18] for classification of 12 different human 
activities with correct classification rate of 94.2%. Authors in 
[19] use Toeplitz matrix of real radar target signal as the input 
of the CNN with 38 layers and a 1.6 million trainable 
parameters with 99.7% classification accuracy. 

This research has been a part of Project No. VA-TT/1/21-23 supported 
by the Ministry of Defence, Republic of Serbia. 
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The spectrogram is based on the Discrete Fourier 
Transform (DFT), while the points where it is calculated are 
equidistantly distributed on the unit circle. The Warped 
Discrete Fourier Transform (WDFT) as the special case of 
non-uniform discrete Fourier transform is introduced in [20]. 
In [21], it is shown that the WDFT has some advantages in 
solving the problem of multi-tone detection and classification 
in comparison to the standard DFT. The nonlinear two-
dimensional WDFT amplitude demodulation method that 
allows higher-resolution measurements on specific two-
dimensional regions of interest is proposed in [22]. Authors in 
[23] proposed the WDFT utilization for improvement of the 
Doppler beam sharpening method for stripmap synthetic-
aperture radar image. The signals from the audio output of the 
ground surveillance radar are analyzed using WDFT in [24], 
and it is shown that spectrogram calculated using WDFT 
provides narrower width around central Doppler frequency 
and suppresses noise. 

In this research the real radar signals that origin from five 
radar target classes (person walking, person running, group of 
persons walking, group of persons running and vehicle) are 
classified. The hierarchical classifier based on SVM with 
polynomial kernel of third degree is projected. The central 
Doppler frequency and spectral width around it are used as 
features. These features are extracted from spectrogram 
calculated using WDFT. The classification performance with 
these features is compared with the features extracted from 
spectrogram calculated using DFT. The obtained results show 
that classifier accuracy is improved when the features 
extracted from spectrogram calculated using WDFT (88.29%) 
than features calculated using DFT (80%). 

The rest of the paper is organized as follows: section II 
considers the representation of spectrograms of radar echo 
signals using DFT and the WDFT, while in section III, the 
process of features extraction from spectrogram and 
spectrogram calculated using WDFT is described. In section 
IV the results of radar target classification is presented. 
Finally, some concluding remarks are provided, as well as 
some ideas for further research. 

II. RADAR SIGNAL ANALYSIS USING WDFT 

Time-frequency analysis methods are often used for 
signals analysis from the audio output of the ground 
surveillance radar since these signals are time varying. 
Spectrogram, SDFT[n,k], is one of the most frequently used 
methods for these analysis and it is defined as, [25]: 
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where x[n] is analyzed sequence, w[n] is the window function, 
n is the discrete time index, k is the discrete frequency index 
and N is the number of points used for the DFT calculation. In 
[24] is presented modified spectrogram calculated using 
WDFT instead of DFT. This modified spectrogram is defined 
as: 
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where zk are points on the unit circle in which the discrete 
Fourier transform is calculated after frequency transformation 
[23]: 
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where ω is original frequency, ̂  is the warped frequency and 
bj

mebb   is the complex parameter of the frequency warping. 

In [23] is shown that the warping of the original frequency axis 
is more significant with the increase of the complex 
parameters modules bm, while the phase of the complex 
parameter ϕb determines the frequency where the points in 
which the WDFT is calculated are accumulated. Due this, the 
selection of the ϕb should be done as: 

  2
)),(max(arg

)(
s

DFT
k

b f

knSf
n   

 

 
 (a) vehicle (b) person walking (c) person running (d) group of person walking (e) group of person running 

 

 (f) vehicle (g) person walking (h) person running (i) group of person walking (j) group of person running 

Fig. 1. Analyzed radar targets spectrograms calculated using DFT (a-e) and modified spectrograms calculated using WDFT for bm=0.5 (f-j). 
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where fs is sampling frequency, )),(max(arg knSf DFT
k

 is 

the frequency that corresponds to the maximum of 
spectrogram calculated using DFT SDFT(n,k) in each time bin. 
In order to provide unique frequency resolution, the frequency 
axis is divided as in [24]. The new frequency resolution 
corresponds to the minimal difference of warped frequencies. 
In this process, the values of this new representation is the 
values of the WDFT in warped frequency bins, while in the 
rest of these bins, the value of this representation is zero. After 
this, the upper envelope of the WDFT is calculated and this 
represents the new transform with high frequency resolution. 
Fig. 1 shows the spectrograms parts of 400 Hz around central 
Doppler frequency calculated using DFT and WDFT of some 
real radar signals from the database [26]. For spectrograms 
calculation, it is used rectangular window whose width is 256 
samples with overlap 50%, while the number of points where 
DFT is calculated is 256. Analyzing of Fig. 1 it can be 
conclude that spectrograms calculated using WDFT provides 
higher resolution around central Doppler frequency than 
spectrograms calculated using DFT.  

III. RADAR SIGNAL FEATURE EXTRACTION 

In this research central Doppler frequency and width 
around it are used as features for ground surveillance radar 
target classification [27]. These two features are calculated 
from modified spectrogram using WDFT. In the first step of 
this procedure modified spectrogram is normalized regards to 
the maximum in every time bin. In the second step the 
segmentation (binarization) of this modified spectrogram is 
obtained using entropy-based method [28]. Further, the 
morphological operations of erosion and dilatation are done 
on the binarized image and the region of the maximal area is 
determined. In the final step for every time bin there is 
determined frequency that corresponds of the maximal value 
of the calculated WDFT, together with up and down cutoff 
frequencies. The difference of these two frequencies is 
spectral width around central Doppler frequency. 

Central Doppler frequency, FCD, is determined as mean 
value of all frequencies that corresponds to the maximum of 
the one modified spectrogram time bins: 
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while mean value of the utilized spectral widths in each time 
bin is spectral width (W) around central Doppler frequencies 
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where M is the number of time bins, and Fup(i) and Fdn(i) are 
up and down cutoff frequencies of each time bin i, 
respectively. After implementing threshold obtained using 
entropy-based method, in each time bin the maximal value of 
nonzero frequency is up cutoff frequency, while the minimal 
value of nonzero frequency is down cutoff frequency. The 
process of calculating central Doppler frequency and spectral 
width around it is illustrated in Fig. 2. The spectrogram of the 
real radar signal that originates from walking person is shown 
in Fig. 2(a). Spectrogram projection on the frequency axis 
(Fig. 2(b)) shows that mean central Doppler frequency of the 
walking human is around 200 Hz. The result of implementing 
threshold calculated using entropy-based method on 
spectrogram is shown in Fig. 2(c). Central Doppler frequency 
together with up and down cutoff frequencies for each time 

bin is shown in Fig. 2(d). From this figure it can be noticed the 
periodical changes of up and down cutoff frequencies due to 
the periodical moving of arms and legs. 

IV. RESULTS 

The signals from the audio output of the ground 
surveillance radar are analyzed in this research. The used radar 
works in the Ku-band with the emitted signal carrier frequency 
of ft=16.9 GHz, while the average emitted signal power is 
Pa=5 mW. The pulse width of the emitted signal is τ=14.63 μs 
and the pulse repetition frequency is PRF=34.18 kHz. Range 
resolution of the used radar is ΔR=150 m, while elevation 
resolution and azimuth resolution are Δε=7.5o and Δφ=5o, 
respectively. Radar use the parabolic antenna with vertical 
polarization whose gain is G=32±2 dB. Detailed description 
of the used radar can be found in [25]. Signal from radar audio 
output is brought to the computer audio input and sampled 
with the frequency fs=4 kHz. The signals that originate from 
five radar targets are collected: person walking (pw), person 
running (pr), group of persons walking (gw), group of persons 
running (gr) and vehicle (vh). The duration of each sequence 
is 4 s, while only one radar target is present in one sequence. 
The database of real radar signals from various classes is 
available in [26]. 

In this research the 410 sequences that originate from five 
radar targets are analyzed: person walking – 96 sequences, 
person running – 70 sequences, group of persons walking – 
121 sequences, group of persons running – 50 sequences and 
vehicles (truck and wheeled) – 73 sequences. For each real 
radar sequence central Doppler frequency FCD and spectral 
width around it W are determined. The utilized features are 
organized as vectors and split into two sets: training and 
testing set in the ratio 70:30. In Fig. 3 it is shown the training 
set of features utilized using spectrogram based on WDFT for 
complex parameters modulus bm=0 and bm=0.5 and used 
rectangular window of length 256 with 50% overlap. 
Analyzing Fig. 3 it can be noticed that feature vectors that 
originate from vehicles characterize lower spectral width 
around central Doppler frequency. Lower central Doppler 
frequencies and some wider spectral width around it are 
utilized from sequences that originate from person walking.  

 
 (a) (b) 

 

 (c) (d)  

Fig. 2. Real radar signal from person walking: (a) normalized 
spectrogram calculated using WDFT, (b) spectrogram projection on 
the frequency axis, (c) binarized spectrogram calculated using 
WDFT after utilizing entropy-based threshold, (d) central Doppler, 
up and down cutoff frequencies of the analyzed signal 

t [s]

f [
H

z]

0.5 1 1.5 2 2.5 3 3.5
0

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

f [
H

z]

|S
W DFTf

(f)|

t [s]

f [
H

z]

0.5 1 1.5 2 2.5 3 3.5
0

100

200

300

400

500

600

0.5 1 1.5 2 2.5 3 3.5
0

100

200

300

400

500

600

t [s]

f [
H

z]

 

 

F
CD

F
up

F
dn

1558



Features that originate from group of person walking have 
more wider spectral width around central Doppler frequency, 
while the values of these frequencies are similar to ones that 
originate from class person walking. From Fig. 3 it can be 
observed that central Doppler frequencies are slightly higher 
for sequences that origins from person running and group of 
persons running comparing to the sequences from classes 
person walking and group of persons walking, but lower than 
sequences that origins from vehicles. Narrower spectral width 
around central Doppler frequency is characteristic for 
sequences that originate from class person running, while for 
class group of persons running there is some wider spectral 
width around it. From Fig. 3 it can be noticed that feature 
vectors that originate from person walking and group of 
persons walking are separable in spectral width around central 
Doppler frequency with some overlap. For feature vectors that 
originate from classes person running and group of persons 
running it can be similar conclusion, with more overlapping. 
Analyzing Fig. 3 it can be noticed that features extracted from 
the modified spectrogram calculated using WDFT with 
bm=0.5 are more grouped than features extracted from 
spectrogram (bm=0). 

In this research, the features obtained using spectrogram 
and modified spectrogram using WDFT for complex 
parameter modulus bm=0.5 are compared. This comparison is 
performed according to the criterion [29]: 

  ,1
BW SSJ   

where SW is within-class scatter matrix and SB is the between-
class scatter matrix. The higher values of criteria J implies that 
the distance between each class is higher and features are 
grouped around mean vectors of each class. For features 

vectors shown in Fig. 3 for spectrogram the value of this 
criteria is JDFT=3.25, while for spectrogram calculated using 
WDFT this criteria is JWDFT=4.82. From this, it can be 
expected that features extracted from spectrogram calculated 
using WDFT provide higher classification accuracy. In this 
research the hierarchical classifier based on SVM is projected 
for all extracted features. All projected classifiers are based on 
polynomial kernel of third degree. The implemented classifier 
is projected in three layers and it is shown in Fig. 4.In the first 
layer the classifier between vehicle and all other classes is 
projected (classifier 1). After that, it is projected the classifier 
2 that classifies features into groups walking and running. In 
the third level, there are two classifiers: in the first one the 
class of person walking and class group of person walking are 
classified (classifier 3) and in the second the class person 
running and class group of persons running are classified 
(classifier 4). The confusion matrix for features obtained using 
spectrogram is showed in Table I, while for same features 
obtained using spectrogram calculated using WDFT is 
showed in Table II. From the Table I, it can be noticed that the 
accuracy of the projected classifier is 80%. The most 
misclassified sequences originate from classes group of 
persons walking and person walking. This is expected due to 
feature vector distribution extracted from spectrogram. 
Analyzing the classification accuracy when the feature vectors 
extracted from the spectrogram calculated using WDFT 
(Table II), it can be concluded that accuracy of the projected 
classifier is improved (88.29%). This is mainly due to the 
higher proper classification rate for all radar targets, except 
group of persons running which is slightly smaller. 

 
 (a) 

 
 (b) 

Fig. 3. Features calculated using spectrogram based on WDFT for 
complex parameter modulus: (a) bm=0, (b) bm=0.5. 

 
 (a) 

 
 (b) 

Fig. 4. Projected hierarchical classifier based on SVM: 1–classifier 
vehicle-other classes, 2–classifier walking-running, 3–classifier 
person walking-group of persons walking, 4–classifier person 
running-group of persons running (a) features extracted from 
spectrogram, (b) features extracted from spectrogram calculated 
using WDFT 

1559



TABLE I.  CONFUSION MATRIX FOR FEATURES EXTRACTED FROM 
SPECTROGRAM 

 pw pr gw gr vh 

pw 79 0 17 0 0 
pr 1 58 0 10 1 
gw 37 0 84 0 0 
gr 1 3 1 45 0 
vh 1 10 0 0 62 

TABLE II.  CONFUSION MATRIX FOR FEATURES EXTRACTED FROM 
SPECTROGRAM CALCULATED USING WDFT 

 pw pr gw gr vh 

pw 82 1 12 1 0 
pr 0 62 1 6 1 
gw 8 0 113 0 0 
gr 2 7 2 39 0 
vh 0 7 0 0 66 

V. CONCLUSION 

In this research the central Doppler frequency and spectral 
width around it are used for classification of real ground 
surveillance radar targets. These features are extracted from 
the spectrogram obtained using warped discrete Fourier 
transform. The signals that originate from five classes are 
analyzed in this research: person walking, person running, 
group of persons walking, group of persons running and 
vehicle. The hierarchical nonlinear classifiers based on SVM 
are projected. The classification performance with features 
extracted from the modified spectrogram calculated using 
warped DFT is compared with the classification with features 
extracted from the spectrogram calculated using DFT. The 
obtained results show higher classifier accuracy if the features 
extracted from the modified spectrogram are used (88.29%) 
than spectrogram calculated using DFT (80%). As the only 
two features are used for classification, the obtained 
classification accuracy is high. In future work, the modulus of 
complex parameter bm that provides the highest classifier 
accuracy will be determined, as well as advanced methods for 
determining the place on the unit circle where points in which 
the DFT is calculated are accumulated.  

REFERENCES 
[1] T. Damarla, “Hidden Markov Model as a Framework for Situational 

Awareness,” in Proc. 11th Int. Conf. Info. Fus., Cologne, France, pp. 
1-7, June 30 -July 3, 2008. 

[2] I. Bilik, J. Tabrikian, and A. Cohen, “GMM-Based Target 
Classification for Ground Surveillance Doppler Radar,” IEEE Trans. 
Aeros. and Elec. Sys., vol. 42, no. 1, pp. 267-278, 2006. 

[3] V. Chen, The Micro-Doppler Effect in Radar, Boston, MA, USA: 
Artech House, 2011. 

[4] V. Chen and H. Ling, Time-Frequency for Radar Imaging and Signal 
Analysis, Boston, MA, USA: Artech House, 2002. 

[5] T. Thayaparan, Lj. Stanković, and I. Đurović, “Micro – Doppler Based 
target Detection and Feature extraction in Indoor and Outdoor 
Environments,” J. Franklin Inst., vol. 345, no. 6, pp. 700-722, 2008. 

[6] D. Mikluc, D. Bujaković, M. Andrić, and S. Simić, “Estimation and 
Extraction of Radar Signal Features Using Modified B Distribution and 
Particle Filters,” Frequenz, vol. 70, no. 9-10, pp. 417-427, 2016. 

[7] D. Bujaković, M. Andrić, B. Bondžulić, S. Mitrović, and S. Simić, 
“Time-Frequency Distribution Analyses of Ku-band Eadar Doppler 
Echo Signals,” Frequenz, vol. 69, no. 3-4, pp. 119-128, 2015. 

[8] P. Molchanov, J. Astola, K. Egiazarian, and A. Totsky, “Classification 
of Moving Ground Radar Objects by using Bispectrum-based 
Features,” Telecom. and Radio Engine., vol. 74, no. 6, pp. 527-545, 
2015. 

[9] P. Molchanov, J. Astola, K. Egiazarian, and A. Totsky, “Classification 
of Ground Moving Radar Targets using Joint Time-Frequency 
Analysis,” in Proc. IEEE Radar Conf., Atlanta, Georgia, USA, pp. 1-
6, May 7-11, 2012. 

[10] T. Thayaparan, S. Abrol, E. Riseborough, Lj. Stanković, D. Lamothe, 
and G. Duff, “Analysis of Radar Micro-Doppler Signatures from 
Experimental Helicopter and Human Data,” IET Radar, Sonar and 
Nav., vol. 1, no. 4, pp. 289-299, 2007. 

[11] M. Andrić, Ž. Đurović, and B. Zrnić, “Ground Surveillance Radar 
Target Classification based on Fuzzy Logic Approach,” in Proc. Int. 
Conf. EUROCON, Belgrade, Serbia, pp. 1390-1392, November 21-24, 
2005. 

[12] A. Tiwari, R. Goomer, S. S. S. Yenneti, S. Mehta, and V. Mishra, 
“Classification of Humans and Animals from Radar Signals using 
Multi-Input Mixed Data Model,” in Proc. Int. Conf. Comp. Comm. 
Infor, Coimbatore, India, pp. 1-6, January 27-29, 2021. 

[13] X. Qiao, G. Li, T. Shan, and R. Tao, “Human Activity Classification 
Based on Moving Orientation Determining Using Multistatic Micro-
Doppler Radar Signals,” IEEE Tran. Geos. Remote Sens., vol. 60, pp. 
1-15, 2022., Art no. 5104415 

[14] E. A. Hadhrami, M. A. Mufti, B. Taha, and N. Werghi, “Ground 
Moving Radar Targets Classification Based on Spectrogram Images 
Using Convolutional Neural Networks,” in Proc. 19th Int. Radar 
Symp., Bonn, Germany, pp. 1-9, June 20-22, 2018. 

[15] Y. Kim and H. Ling, “Human Activity Classification Based on Micro-
Doppler Signatures Using a Support Vector Machine,” IEEE Tran. 
Geos. Remote Sens., vol. 47, no. 5, pp. 1328-1337, 2009. 

[16] L. Du, L. Li, B. Wang and J. Xiao, “Micro-Doppler Feature Extraction 
Based on Time-Frequency Spectrogram for Ground Moving Targets 
Classification With Low-Resolution Radar,” IEEE Sensors J., vol. 16, 
no. 10, pp. 3756-3763, 2016. 

[17] D. Lee, C. Cheung and D. Pritsker, "Radar-Based Object Classification 
using an Artificial Neural Network," in Proc. Nat. Aero. Elect. Conf., 
Dayton, USA, pp. 305-310, July 15-19, 2019. 

[18] M. Seyfioglu, A. Ozbayoglu and S. Gurbuz, "Deep Convolutional 
Autoencoder for Radar-Based Classification of Similar Aided and 
Unaided Human Activities," IEEE Tran.Aero. Elec. Sys, vol. 54, no. 4, 
pp. 1709-1723, 2018. 

[19] Y. Li, Y. Rui, and J. Gao, "Ground surveillance radar target 
classification based on 2D CNN," in Proc. Int. Conf. Sig. Process. Sys., 
Shanghai, China, p. 117190N, January 20, 2021. 

[20] A. Makur, and S. K. Mitra, “Warped Discrete-Fourier Transform: 
Theory and Applications,” IEEE Tran. Circ and Systems – I Fund. 
Theory and App., vol. 48, no. 9, pp. 1086-1093, 2001. 

[21] O. Kwon, and F. Taylor, “Multi-tone detection using the warped 
discrete Fourier transform,” in Proc. 51st Midwest Symp. Circ. Sys., 
Knoxville, TN, USA, pp. 281-284, September 3-6, 2002. 

[22] D. Wei, and K. Takeuchi, “Application of Two-Dimensional Warped 
Discrete Fourier Transform to Nonlinear Two-Dimensional Amplitude 
Demodulation,” Optics Comm., vol. 510, 127972, 2022. 

[23] D. Bujaković, M. Andrić, S. Simić and G. Antonijević, “Modification 
of the DBS Algorithm for Stripmap SAR Image Forming Using 
Warped DFT,” in Proc. 2018 New Trends Sig. Process., Liptovski 
Mikulaš, Slovakia, pp. 1-8, October 10-12, 2018. 

[24] D. Bujaković, M. Andrić, D. Mikluc and B. Bondžulić, “Analysis of 
Human Radar Echo Signal using Warped Discrete Fourier Transform,” 
in Proc. 2016 New Trends Sig. Process., Liptovski Mikulaš, Slovakia, 
pp. 1-6, October 12-14, 2016. 

[25] M. Andrić, D. Bujaković, B. Bondžulić, S. Simić, and B. Zrnić, 
“Analysis of Radar Doppler Signature from Human Data,” 
Radioengineering, vol. 23, no. 1, pp. 11-19, 2014. 

[26] M. Andrić, B. Bondžulić, and B. Zrnić, The Database of Radar Echoes 
from Various Targets. 
https://mega.nz/#!L4Nzxa4K!sSes9SnbRVUUn59Z8bUtg782p685Lv
69IVKVx1FzlTw 

[27] T. Šević, M. Andrić, B. Bondžulić, D. Bujaković, and D. Ivković, 
“Radar Target Feature Extraction Using Spectrogram (in Serbian),” in 
Proc. 22th Int. Conf. INFOTEH, Žabljak, Montenegro, pp. 233-237, 
February 27-March 4, 2017. 

[28] J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, “A New Method for 
Gray-level Picture Thresholding using the Entropy of the Histogram,” 
Comp. Vis., Graph. Image Process., vol. 29, no. 3, pp. 273-285, 1985. 

[29] S. Theodoridis, and K. Koutroumbas, Pattern Recognition, Burlington, 
MA, USA: Academic Press, 2009. 

 

1560


