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Abstract—Commercial radar sensing is gaining relevance and
machine learning algorithms constitute one of the key compo-
nents that are enabling the spread of this radio technology into
areas like surveillance or healthcare. However, radar datasets are
still scarce and generalization cannot be yet achieved for all radar
systems, environment conditions or design parameters. A certain
degree of fine tuning is, therefore, usually required to deploy
machine-learning-enabled radar applications. In this work, we
consider the problem of unsupervised domain adaptation across
radar configurations in the context of deep-learning human ac-
tivity classification using frequency-modulated continuous-wave.
For that, we focus on the theory-inspired technique of Margin
Disparity Discrepancy, which has already been proved successful
in the area of computer vision. Our experiments extend this
technique to radar data, achieving a comparable accuracy to few-
shot supervised approaches for the same classification problem.

Index Terms—radar, machine learning, deep learning, transfer
learning, domain adaptation, human activity classification

I. INTRODUCTION

Radar, a well-established technology for several industrial
areas, has recently gained attention for other commercial appli-
cations like human monitoring, presence detection or gesture
sensing [1–3] due to the production of small and compact radar
sensors [4]. Here radar offers some advantages in comparison
with computer vision approaches, such as good performance
under poor-lighting conditions or privacy protection (due to
the difficulty to identify individuals from radar images).

Similarly as in the realm of computer vision, the use of
radar often comes hand in hand with machine learning (ML)
techniques, including deep learning, to overcome the burden
of handcrafted feature engineering [5]. Due to the variety
of system design parameters at hand, such as modulation
techniques or bandwidth, these ML algorithms are required
to generalize well under different radar setups. This need
for inter-domain generalization is common to several ML
problems and it has been studied in recent years under the
paradigm of domain adaptation (DA) [6, 7].

Considered a special case of transfer learning, DA involves
modifying an ML estimator that can be trained with enough
data from a source domain, so that its performance increases
when evaluated with data originated from a different target

domain. Unlike other transfer learning approaches, here the
mismatch between source and target domain lies merely in a
distinct probability measure over data rather than in different
input or output spaces [7].

The reasons for DA are usually related with insufficient or
incomplete data in the target domain, which can be overcome
with the help of data from the source domain. In ML classi-
fication, the missing information is often the labels; this case
is referred to as unsupervised DA. If target data are labeled,
we can apply supervised DA techniques instead [6].

Both supervised and unsupervised DA methods have already
been investigated in the Radar-ML community to overcome
several problems, including individual patient differences [8],
aspect angle variations [9], synthetic-to-real adaptation [10]
or environmental differences [11]. In the case of cross-
configuration adaptation, Khodabakhshandeh et al. [12] use
supervised techniques such as Few-shot Adversarial Domain
Adaptation (FADA) [13] or domain adaptation using Stochas-
tic Neighborhood Embedding (d-SNE) [14] to adapt their
trained human activity classifier to new frequency-modulated
continuous-wave (FMCW) radar setups using few data.

In this paper, we build on the work in [12] by applying
Margin Disparity Discrepancy (MDD) [15]. In that way, we
confirm that this unsupervised technique, which delivers state-
of-the-art results for computer vision datasets, also works for
radar data and thus enables cross-configuration radar-based
human activity classification based on unlabeled data.

II. PROBLEM STATEMENT

Radar-ML classification deals with the evaluation of a group
of radar features x ∈ X obtained from a target to find the
underlying class y ∈ Y that best describes some property of
the said target. The input space X ⊂ Rm is characterized
by a dimension m that depends on the radar technology and
preprocessing steps, while the label space is defined as Y =
{1, . . . , k}, with k being the number of classes.

In order to achieve this classification, one has first to find
a classifier h that maps x into y. The ML approach assumes
a sufficiently large amount of data available conveying infor-
mation both about the inputs and the class so that it can be
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used to train h among a restricted hypothesis class H. This
dataset consists of a sequence of pairs of features and labels,
i.e. {(xi, yi)}ni=1, that have been previously sampled from a
certain domain D, defined to be

D = (X ,Y, pD) , (1)

with an associated probability measure pD over X ×Y . Here
and hereafter, we write x and y in their upright form whenever
we refer to the random variables related to pD, and not to its
realizations.

By choosing an objective loss function

` : H×X × Y → R0+ (2)

and minimizing it over the hypothesis class H with a suitable
optimization method, we can train an h that performs well for
the available data. The performance of h can thus be measured
by the risk associated with the loss for a domain D. This risk
LD represents the expected value of the loss of h for pD:

LD (h) = ED` (h, (x, y)) . (3)

By assuming the indicator function 1h(x)6=y to be the loss,
we obtain the 0-1 error errD (h) , ED1h(x)6=y. In practice,
we do not have access to pD, so we resort to its empirical
approximation LD̂ (h) ,

∑n
i=1 ` (h, (xi, yi))/n for a dataset

D̂ with n samples drawn from D.
If generalization is achieved, h will also behave well for

unseen data as long as it is drawn from the same domain.
Unfortunately, this assumption cannot always be guaranteed.
It is often the case that training data have been drawn from a
source domain S but we would like to leverage the trained
classifier for a different target domain T . Depending on
how dissimilar S and T are, the performance of the trained
classifier can degrade significantly. In our specific problem,
this domain shift is given by the choice of different FMCW
settings and presents an additional challenge in the lack of the
labels for the training data from T . The absence of labeled
target data makes it necessary to apply unsupervised DA.
In this paper, we explore this possibility by using Margin
Disparity Discrepancy (MDD) [15].

A. Margin Disparity Discrepancy

In order to use MDD, we assume a hypothesis class induced
by a space F of scoring functions f : X 7→ Rk. We also
introduce the shorthand fy (x) to refer to the y-th component
of f (x). The hypothesis class is given by

H ,

{
hf : x 7→ arg max

y∈Y
fy (x) | f ∈ F

}
. (4)

MDD has been developed by Zhang et al. [15] as a practical
algorithm based on the concept of discrepancy distance by
Mansour et al. [16]. For that, they define the margin loss
err(ρ)D (f) as

err(ρ)D (f) , EDΦ(ρ) ◦ φf (x, y) , (5)

φf (x, y) ,
1

2

(
fy (x)−max

y′ 6=y
fy′ (x)

)
, (6)

Φ(ρ) (x) ,


0 ρ ≤ x
1− x/ρ 0 ≤ x ≤ ρ
1 x ≤ 0

, (7)

and the true and empirical margin disparity between two
scoring functions f ′ and f as

disp(ρ)D (f ′, f) , EDΦ(ρ) ◦ φf ′ (x, hf (x)) , (8)

disp(ρ)

D̂
(f ′, f) ,

1

n

n∑
i=1

Φ(ρ) ◦ φf ′ (xi, hf (xi)) , (9)

to finally formulate the following minimax optimization prob-
lem:

min
f∈F

err(ρ)
Ŝ

(f) + d
(ρ)
f,F

(
Ŝ, T̂

)
,

d
(ρ)
f,F (S, T ) , sup

f ′∈F

(
disp(ρ)

T (f ′, f)− disp(ρ)S (f ′, f)
)
.

(10)

Following the principles of unsupervised DA, the MDD term
d
(ρ)
f,F does not make use of any labels yi. Furthermore, the

solution to (10) minimizes the 0-1 error of hf in the target
domain, as the authors of [15] prove with the following
theoretical bound:

errT (hf ) ≤ err(ρ)S (f) + d
(ρ)
f,F (S, T ) + λ , (11)

where λ is the ideal combined margin loss:

λ = min
f∗∈F

{
err(ρ)S (f∗) + err(ρ)T (f∗)

}
. (12)

The bound in (11) can also be expressed in terms of
empirical measures rather than true probability measures by
the addition of Rademacher complexity terms [17, Chapter 3].

Despite the interesting properties of MDD, Φ(ρ) ◦ φf is
non-smooth, non-convex and its training causes vanishing and
exploding gradients, which leads Zhang et al. [15] to work
with the cross-entropy loss instead. For this, they map f (x)
to the k-simplex via the softmax function σ, as it is customary
in deep learning, where the elements of σ (z) are given by

σj (z) ,
exp zj∑k
i=1 exp zi

, for j = 1, . . . , k . (13)

The composition of the cross-entropy loss with the softmax
yields the log-sum-exp (lse) loss £f :

£f (x, y) , H (1j=y, σ (f (x))) = − log σy (f (x))

= log
∑
y′∈Y

exp (fy′ (x)− fy (x)) . (14)

Zhang et al. [15] propose to use £f instead of Φ(ρ) ◦ φf
for err(ρ)

Ŝ
and disp(ρ)

Ŝ
in (10). As for disp(ρ)

T̂
, they use the

adversarial loss £̃f proposed by Goodfellow et al. [18], i.e.

£̃f (x, y) , log (1− σy (f (x))) , (15)
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so that their MDD ultimately becomes

d̃
(γ)
f,ψ,F

(
Ŝ, T̂

)
, max
f ′∈F

Ext∼T̂ £̃f ′
(
ψ
(
xt
)
, hf

(
ψ
(
xt
)))

− γExs∼Ŝ£f ′ (ψ (xs) , hf (ψ (xs))) (16)

for a margin factor γ > 0 and a feature extractor ψ that levels
the min-player to the max-player [15] (A concrete example
of ψ is given in (27), Section III). The authors explain that
this is equivalent to the use of the margin loss with a margin
ρ = log γ and that the problem is still solved for S = T [15].

In addition to the results in [15], we observe that the use
of the recently proposed soft-margin softmax [19] instead of
σ in (14) provides an upper bound for err(ρ)S . The entries of
the soft-margin softmax σ(ρ) (z) are defined as

σ
(ρ)
j (z) ,

exp (zj − ρ)

exp (zj − ρ) +
∑
i 6=j exp zi

,

for j = 1, . . . , k; ρ ∈ R+ (17)

and this induces the soft-margin cross-entropy loss £
(ρ)
f :

£
(ρ)
f (x, y) , − log σ(ρ)

y (f (x))

= log
∑
y′∈Y

exp (fy′ (x)− fy (x) + ρ · 1y′ 6=y) . (18)

Likewise, a soft-max adversarial loss can also be defined as

£̃
(ρ)
f (x, y) , log

(
1− σ(ρ)

y (f (x))
)
. (19)

We prove this soft-margin-based bound with the help of
the following Lemma, which motivates us to investigate £

(ρ)
f

further in Section III.

Lemma 1. The soft-max cross entropy bounds the margin loss
as

Φ(ρ) ◦ φf (x, y) ≤ 1

2ρ
£

(2ρ)
f (x, y) . (20)

Proof. First, let us recall the generalized hinge loss [20]:

}(θ)f (x, y) , max
y′∈Y

(fy′ (x)− fy (x) + θ · 1y′ 6=y) . (21)

Noting that the term within maxy′∈Y is null ∀y′ = y, we have

}(2ρ)f (x, y) = max

{
0,max
y′ 6=y

fy′ (x)− fy (x) + 2ρ

}
=

max {0, 2ρ− 2φf (x, y)} = 2ρmax {0, 1− φf (x, y) /ρ} .
(22)

The last expression in (22) can be derived from (7) if we
set 1− x/ρ instead of 1 for x ≤ 0, hence

Φ(ρ) ◦ φf (x, y) ≤ 1

2ρ
}(2ρ)f (x, y) (23)

and the proof is concluded using the fact that

log
∑
a∈A

exp a ≥ max
a∈A

a (24)

for any finite set A.

TABLE I
RADAR CONFIGURATION PARAMETERS

Configuration name I II III IV
Chirps per frame nc 64 64 64 64
Samples per chirp ns 256 256 128 256
Bandwidth [GHz] 2 1 2 2
Frame period [ms] 50 32 32 32
Chirp to chirp time [µs] 250 250 250 250
Range resolution [cm] 7.5 15 7.5 7.5
Max. range [m] 6.2 12.5 4.8 6.2
Max. speed [m/s] 5.0 5.0 5.0 5.0
Speed resolution [m/s] 0.15 0.15 0.15 0.15

Taking the expectation w.r.t. pS in (20), we finally obtain

err(ρ)S (f) ≤ 1

2ρ
ES£

(2ρ)
f (x, y) . (25)

Despite the gap introduced by Eqs. (23) and (24), we note
that Eq. (25) delivers convincing bounds for a small err(ρ)S (f),
which can be achieved by training f under enough samples
from S.

III. EXPERIMENTS

A. Setup

Similarly as in [12], we focus on human activity recognition
using data that have been measured simultaneously with 4 dif-
ferent 60-GHz FMCW radar sensors. For these measurements,
2 male subjects were recorded separately while performing
5 different activities: standing, waving, walking, boxing or
boxing while walking. Each one of the radar sensors was
configured with a different set of radar parameters, presented
in Table I as I to IV. Here, the divergent parameters of the dif-
ferent configurations (marked in bold) affect the temporal and
range resolution of the range-Doppler map (RDM) sequences,
as well as the maximum observable scope of the latter. From
these configurations, I has been taken over from [12].

The input features x in Fig. 1 comprise both range (xr) and
Doppler (xd) information, i.e.:

x = (xr,xd) , xr,xd ∈ R64×128. (26)
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Fig. 1. Range and Doppler spectrogram for boxing while walking.
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The radar preprocessing to produce x is also based on [12],
with the notable addition of cropping and resampling of the
spectrograms to ensure the dimensions in (26) and the scopes
of 0 to 2 s, 0.0 to 4.8 m and −5 to 5 m/s for the time, range
and Doppler dimensions, respectively.

Despite all the preprocessing, the differences on resolution
still yield a domain shift across configurations that we try to
tackle with MDD. For that, we take both spectrograms as an
input to our feature extractor ψ. Here we choose the same
topology as in [12]; that is, a pair of twin branches ψr and
ψd, each one consisting of 3 convolutional layers for which
we concatenate the outputs:

ψ (x) ≡ (ψr (xr) , ψd (xd)) . (27)

Furthermore, we employ a bottleneck layer of 512 nodes
and choose our hypothesis space F to be consistent with the
structure of the fully connected layers from [12].

Motivated by Lemma 1, we replace the vanilla loss terms
in (16) by the soft-margin losses £(ρ) and £̃(ρ) with

ρ = 2 log 2 ' 1.386 (28)

and we set the margin factor γ = 1 since the margin ρ is
already included in the loss, effectively rendering MDD as

d̂
(ρ)
f,ψ,F

(
Ŝ, T̂

)
, max
f ′∈F

Ext∼T̂ £̃
(ρ)
f ′

(
ψ
(
xt
)
, hf

(
ψ
(
xt
)))

− Exs∼Ŝ£
(ρ)
f ′ (ψ (xs) , hf (ψ (xs))) . (29)

Other than that, we leave all hyperparameters to the same
values as in [15] and adapt their implementation as in Fig. 2.
This has been written in Pytorch as an instance of adversarial
training, where a gradient reversal layer (GRL) is used to
minimize the MDD loss term on ψ while maximizing on f ′

as the minimax formulation in (10) mandates.
The number of samples per dataset lies over 1150 samples

for the train sets and over 350 samples for the test sets.

B. Results

We have run unsupervised training experiments for all pos-
sible domain pairs within configurations I-IV and summarized
the resulting test accuracies on the test sets in Table II.

The figures follow the same trend as the results of MDD in
computer vision datasets as reported by Zhang et al. [15]. and

ψd

Source
Risk

f

MDD
GRL

ŷ

ŷ′

One-hot

f ′

Min

Max

Concatenate

ψr

Fig. 2. MDD adversarial network, adapted from [15].

TABLE II
TEST ACCURACY [%] OF MDD FOR FMCW DATA

Target configuration

So
ur

ce
co

nfi
gu

ra
tio

n I II III IV
I - 91.4 90.6 88.3

II 90.9 - 89.8 89.4
III 89.4 90.4 - 89.4
IV 92.5 85.8 90.9 -

TABLE III
MIN. AND MAX. ACCURACY [%] OF MDD FOR DIFFERENT DATASETS

Office-31 Office-Home VisDa FMCW
72.2-100.0 53.6-82.3 74.6 (single value) 85.8-92.5

TABLE IV
AVERAGE ACCURACY COMPARISON [%] OF THE ORIGINAL MDD

IMPLEMENTATION AND THE SOFT-MARGIN VERSION

Office-31 Office-Home FMCW
Original MDD 88.9 68.1 89.525
Soft-margin MDD 88.3 67.6 89.9

presented in Table III. Here one can compare, for instance, the
results using MDD for our FMCW data with the minimum
and maximum accuracies obtained for Office-31, a dataset
containing 4,652 images from three domains [21]. It is also
noteworthy that the highest accuracy for FMCW exceeds both
that of the Office-Home dataset (15,500 images from four
domains) [22] and the VisDA dataset (280K real and synthetic
images) [23].

Our results are also comparable with the FADA method
for FMCW-based human activity recognition in [12], which
increases the baseline accuracy of 50–60 % without DA to
88–92 %. Here it is important to note that MDD is, in contrast
to FADA, an unsupervised technique and thus it presents the
advantage of working with unlabeled target data.

We have also compared the average accuracy across domain
combinations for the original implementation of MDD in (16)
with the average accuracy for our soft-margin version in (29),
taking the Office-31 and Office-Home datasets as well as our
FMCW radar data. The results, which can be seen in Table IV,
show little difference between both implementations.

IV. CONCLUSION

In this work, we confirm that the MDD algorithm, which
has already shown promising results for unsupervised DA in
the area of computer vision, is also suitable for radar data
across different FMCW parameters. The obtained accuracy can
become as high as for some supervised techniques [12] while
using a much more limited dataset, paving thus the way for a
prompt deployment of radar-based deep learning applications
with custom configurations.

In our experiments, we observe that the use of the soft-
margin cross entropy loss provides similar results as the origi-
nal implementation by Zhang et al. [15]. Since the motivation
of MDD is to bring the algorithms closer to the analytical

1569



performance bounds of DA, we see potential in this alternative
loss function to bridge the gap between theory and practice.
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