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Abstract—Deep Learning techniques require vast amount of
data for a proper training. In human activity classification using
radar signals, the data acquisition can be very expensive and
takes a lot of time, but radar databases are starting to be
available to the public. In this work we show that we can use
these available radar databases to pretrain a neural network
that will finish its training on the final radar data even though
the radar configuration is different (geometry configuration and
carrier frequency).

Index Terms—deep learning, transfer learning, micro-doppler,
cadence velocity, human activity

I. INTRODUCTION

Machine learning and especially deep learning are known to
require a vast amount of annotated data. In computer vision,
it is common to benefit from large corpora of data, even out
of the domain of interest, by pretraining the predictor on this
dataset and then finetuning on the data of interest. In this paper,
we are interested in activity classification from continuous
wave (CW) radar signals. When someone acts in front of a
CW radar system, its motion alters the frequency of the radar
wave due to the Doppler effect which can be detected and
hopefully used to classify the “observed” activity. However,
as in any other machine learning problem, the question of the
availability of large amounts of data is raised. In this paper, we
study to which extend, as in computer vision or other domains,
training a neural network can benefit from transfer learning
with a, possibly out of domain, large dataset of activity
recordings from radar signals. The paper is structured as
follows: in section II we present the different recording setups
and available data, their preprocessing is detailed in section III.
The neural network architecture and training procedure are
presented in section IV before the transfer learning approach
in section V and the results in section VI. A discussion on the
results and further works concludes the paper.

II. DATASETS

In this paper, we consider two sources of data consisting of
radar signal recordings. The first dataset is a large collection
provided in the context of the radar challenge proposed during
the IET 2020 International Radar Conference1. The second
dataset was collected by our SONDRA research group. In both
datasets, 6 activities were considered, but two of them are

1https://humanactivitiyclassificationwithradar.grand-challenge.org/

different, depending on the source. The main characteristics
of those datasets are presented in table I. All the activities
induce a different velocity pattern which ultimately leads to
different micro-doppler signatures.

A. Radar challenge dataset

The FMCW radar dataset used in this work has been
downloaded from [1]. The data was collected using an off-the-
shelf linear FMCW radar (by Ancortek) operating at C-band
(5.8 GHz) with a bandwidth of 400 MHz and chirp signal
(linear frequency modulation) duration of 1 ms, delivering
an output power of approximately 18 dBm. The transmitting
and receiving antennas have a gain of about 17 dBi [1].
The radar data is composed of de-chirped complex signals
(128 I − Q samples per sweep or chirp). Six activities must
be classified using radar measurements: falling, picking up,
drinking, walking, sitting down, and standing up. All the
classes were almost balanced, only the falling class had 30%
samples less than the other classes. The recordings were
performed in 10 different rooms.

B. SONDRA dataset

A CW radar dataset have been collected in the main
corridor of our laboratory. It is composed of complex signals
of sampling frequency of 2 KHz after demodulation and
decimation. For the transmitter, we used a E4438BC Agilent
signal generator, output power of 10 dBm and antenna gains of
10 dBi, 6 dBi and 0 dBi for 4 GHz, 2.35 GHz and 0.9 GHz,
respectively. For the receiver, we used a software defined
radio USRP 2495R from National Instruments, internal gain of
20 dB and antenna gain of 10 dBi for all the frequencies. We
have considered two scenarios: active (transmitter and receiver
synchronization) line-of-sight, quasi-monostatic, hence similar
to the Radar challenge scenario (although the waveform and
some activities are different); and passive through-the-wall
radar (one antenna behind a wall, distance between antennas
of 3.4 m, transmitter and receiver not synchronized), which is
a different and more complex configuration compared to the
Radar challenge dataset.

We purposefully considered settings that are similar to the
radar challenge with the 4 GHz carrier frequency line-of-sight
quasi-monostatic setup but also tried to push the limits by
studying the performance of transfer on a completely different
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Fig. 1: Spectrogram and cadence velocity
representations for the walking activity at
0.9 GHz CW.

Fig. 2: Spectrogram and cadence velocity
representations for the walking activity at
4 GHz.

Fig. 3: Spectrogram and cadence velocity
representations for the walking activity at
5.8 GHz FMCW.

TABLE I: Main characteristics of the two radar datasets used
in this paper.

Radar Challenge SONDRA dataset
Carrier Freq. 5.8 GHz 4 GHz 2.35 GHz 0.9 GHz
Radar config. quasi monostatic bistatic (baseline 3.4m)

Scenario config. line of sight through-the-wall
Waveform FMCW CW

Nb. of Samples 1752 300 407 455

Activities

walk
sit down
stand up
pick up

drink walk with object
fall put down object

setup with 2.35 GHz and 0.9 GHz carrier frequencies in a
through-the-wall passive radar.

III. PREPROCESSING

Since the target SONDRA dataset exploits a CW signal,
no range information is available (whereas in our previous
work [2], three representations were extracted: spectrogram,
doppler-range and range-time), hence only two signal repre-
sentations were considered: spectrogram and cadence-velocity
[3] and the FMCW radar signals are transformed into a
synthesized CW to collapse the range information.

A. Synthesized CW signal from FMCW data

The raw-data of the Radar challenge dataset are reshaped as
a 128×nchirps matrix, where nchirps is the number of chirps.
The chirps last 1 ms, and the number of chirps depends on the
recordings lasting either 5, 10, or 20 seconds. In the following,
we denote as fast time the temporal axis along the 128 samples
and as slow time the temporal axis along the nchirps lines.

The range-time representation is computed from a Fourier
transform along the fast time.

To get spectrograms independent of range, hence closer
to what we obtain with a CW radar, we need to get rid of
the range information by ”synthesizing” CW signals. This is
obtained by aggregating all the range bins, as expressed in the
next equation:

Cr prof (t) = (c0(t), c1(t), . . . , cN−1(t))
T

SCW (t) =

N−1∑
k=0

ci(t) (1)

where Cr prof (t) ∈ CN is the complex-valued range profile
vector (N elements, in our case 128, samples per sweep) for a
specific t (slow time, an integer multiple of chirp duration, 1
ms in our case), SCW (t) ∈ C the complex-valued synthesized
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Fig. 4: Spectrogram and cadence veloc-
ity representations for the sit activity at
0.9 GHz CW.

Fig. 5: Spectrogram and cadence veloc-
ity representations for the sit activity at
4 GHz MHz.

Fig. 6: Spectrogram and cadence veloc-
ity representations for the sit activity at
5.8 GHz FMCW.

CW signal for a specific t. Notice that after this operation
we obtain a single complex value for each sweep (1 ms of
duration), hence, the final effective sampling is 1 KHz. After
this, we can obtain spectrogram and cadence-velocity diagrams
as in the case of a regular CW signal as detailed in the next
sections.

B. Spectrogram and Cadence-velocity

For the spectrogram obtained from the radar challenge
dataset we used a window of 0.512 s and time stride of 12 ms.
For the SONDRA dataset we used a window of 0.3 s and time
stride of 30 ms.

For the cadence-velocity diagram, which is a Fourier trans-
form from the spectrogram for each fixed Doppler frequency
(hence along the time axis, see [3]), we truncated the cadence
frequency axis (horizontal axis) up to ±60 Hz for the radar
challenge dataset, and up to ±22 Hz for the SONDRA dataset.

As seen in the figures 1-6, the Doppler frequency gets
closer to 0 Hz as the carrier frequency decreases, hence
the representations (spectrogram and cadence-velocity) were
truncated in the Doppler frequency axis (vertical axis) up to
±100 Hz for the higher carrier frequencies 5.8 GHz (radar
challenge) and 4 GHz (SONDRA dataset). For the other
frequencies (SONDRA dataset), the truncation was done up to
±60 Hz and ±23 Hz, for the carrier frequencies of 2.35 GHz

and 0.9 GHz, respectively. Note that the dB scale does not
any physical meaning because it depends on several internal
factors of the hardware of the system.

IV. CONVOLUTIONAL NEURAL NETWORK CLASSIFIER

We use the same neural network as in [2] in their submission
for the radar challenge except that, here, we do not use the
same input representation. As detailed in the previous section,
two representations are extracted from both the FMCW and
CW radar signals: a spectrogram and a cadence velocity
representation which are resized to 128× 128 matrices. Each
diagram feeds a branch of the neural network before being
concatenated and feeding a classification head. The neural
network architecture is summarized in table II. The inputs
are normalized by division by the maximum value and cen-
tered/reduced, the statistics being computed on the training set
and used for normalizing the training and validation data. The
normalization coefficients are computed for every experiment
from their own training set.

Given inputs of size 128× 128, the output feature maps of
the convolutional stages, before the global average poolings,
are 8 × 8 in spatial dimension and the depth of the stack of
convolutional and pooling layers make their receptive field
cover the whole input.
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TABLE II: Neural network architecture. Conv(n) denotes a
2D convolutional layer with n kernels of size (3, 3). Every
convolution has a stride 1 and zero padding of size 1. MaxPool
is a 2D max pooling layer with kernel size (2, 2), stride 2.

Cadence velocity (128× 128) Spectrogram (128× 128)

Conv(64), Relu Conv(64), Relu
Conv(64), Relu Conv(64), Relu

MaxPool, Dropout(0.5) MaxPool, Dropout(0.5)

3×


BatchNorm

3×


BatchNorm

Conv(64), Relu Conv(64), Relu
Conv(64), Relu Conv(64), Relu

MaxPool, Dropout(0.5) MaxPool, Dropout(0.5)

BatchNorm BatchNorm
Conv(64), Relu Conv(64), Relu
Conv(64), Relu Conv(64), Relu

GlobalAvg, Dropout(0.5) GlobalAvg, Dropout(0.5)

Fully connected (128), Relu
Dropout(0.5)

Fully connected (6), Softmax

The neural network is optimized with Adam, using an initial
learning rate ϵ = 0.001, halving the learning rate every 10
epochs. The batch size is 16. For regularization, in addition to
the dropout layers, we use a L2 regularization with λ = 0.003.
A validation split is built from 20% of the data randomly
chosen from the training set. The best model is selected by
early stopping on the validation accuracy.

The parameters are initialized with the default strategy of
pytorch [4] for convolutional and linear layers, namely the bias
and the weights are all sampled from a uniform distribution
in [− 1√

fan in
, 1√

fan in
]

V. TRANSFER LEARNING

In order to investigate the interest of using a large FMCW
dataset for training a classifier on CW data, we consider a
very simple parameter based approach of transfer learning
[5]. As it is common in other machine learning domains
(e.g. image classification with ImageNet [6]) we pretrain the
neural network on the FMCW dataset as in [2] and then
reuse the best learned parameters as a starting point for the
gradient descent over the CW dataset. For training on the CW
dataset, we could reinitialize at random the parameters of the
classification head but as some activities overlap, the linear
softmax layer is not reinitialized at random. Instead, we rather
re-arrange the weights of the output layer during the transfer
so that the classes of the target dataset reuse knowledge
extracted from the initial pretraining. All the parameters of
the architecture are trainable (none of them are frozen). To
study the interest of transfer, we also train the networks from
a random initialization.

VI. RESULTS

The learning curves for the training are shown on figure 7
for the CW data at 0.9 GHz, on figure 8 for the CW data at
2.35 GHz and on figure 9 for the CW data at 4 GHz. The two

metrics of the cross entropy loss and the accuracy are depicted
on both figures. The first observation for all the CW carrier
frequencies is that the models learn faster with pretrained
parameters than from randomly initialized parameters: the
same accuracy is reached with transfer in half the number
of steps required to reach the same accuracy without transfer.
This gives sense to the pretraining: some knowledge, extracted
during the training on the FMCW dataset, is certainly reused
when the neural network is finetuned on the CW datasets.

Maybe more surprisingly, in addition to be faster, the
transfer learns a better model. If we look at the accuracies,
the transfer ends up with a gain from 5% at 0.9 GHz to 10%
at 2.35 GHz and 20% at 4 GHz on the validation sets. There
is a also a gain on the cross entropy loss meaning the models
are more certain in their predictions of the correct classes.
Although the cross-entropy is averaged over the samples, it
is reasonable to assume that the model trained with transfer
is more confident about its predictions. The influence of one
sample in the cross-entropy loss is log(pi) with pi the proba-
bilities assigned by the model to the correct class. The benefit
of the transfer learning is higher for the CW carrier frequency
most similar with the FMCW carrier frequency. There might
be several factors explaining this. First, if the FMCW and CW
carrier frequencies are close, the representations themselves
are more similar and the neural network can rely on similar
pattern detectors to decide the class. The setup for which the
largest improvement in the performance is observed is for a
4 GHz carrier frequency in a quasi-monostatic line-of-sight
configuration, almost the same as for the radar challenge.
Second, the setups with the carrier frequency of 2.35 GHz and
0.9 GHz are through-the-wall and bi-static, therefore a really
different setup from the original 4 GHz line-of-sight setup
where the velocity profiles are expected to be different. Still,
even in these extreme situations, we observe some benefits of
the pretraining.

Finally, it is not shown on the figures but with transfer
learning, we observed the learning curves were less varying
and were more consistent across multiple runs.

VII. DISCUSSION

The results of this paper show that training a neural network
can benefit from large datasets of radar recordings to train
feature detectors that can generalize to other setups. The setup
variation we explored are both for the alignment between
the radar apparatus and the moving target and the carrier
frequency. For the carrier frequency, our experiments show that
it is possible to benefit from a pretraining on a higher carrier
frequency and to transfer on lower ones. It is yet unclear if the
benefits would be similar or not if we would have operated in
the other direction.

In one experiment, not shown in the paper, we tried to
change the content of the FMCW representations to better
match what we would expect if the carrier would have been
the same as the one for the CW data. The hypothesis was that
more similar carrier frequency lead to more similar features to
extract. We therefore degraded the FMCW signals sampled at
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Fig. 7: Cross-entropy loss (top) and ac-
curacy (bottom) of the best runs with and
without transfer learning for 900 MHz.
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Fig. 8: Cross-entropy loss (top) and ac-
curacy (bottom) of the best runs with and
without transfer learning for 2.35GHz.
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Fig. 9: Cross-entropy loss (top) and ac-
curacy (bottom) of the best runs with and
without transfer learning for 4GHz.

5.8 GHz down to 0.9 GHz before transferring the network to
the 0.9 GHz CW signals but the results were not as good as
without the degradation. The neural network was more likely
to overfit the CW dataset. Certainly, a careful exploration of
the hyperparameters of the training is required to conclude.
It would be worth investigating other forms of regularization
than the ones we considered in this paper such as the recently
introduced Mix-Up [7] or label smoothing [8].

In any case, the pretraining approach is, even if promising,
still a very naive approach of transfer learning and there are
plenty of other approaches proposed in the literature on meta-
and few-shot learning [5] that would be worth investigating in
future works.
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F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035.

[5] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He,
“A comprehensive survey on transfer learning,” Proceedings of the IEEE,
vol. 109, no. 1, pp. 43–76, 2021.

[6] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla,
B. Schiele, and T. Tuytelaars, Eds. Cham: Springer International
Publishing, 2014, pp. 818–833.

[7] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
Beyond empirical risk minimization,” in International Conference on
Learning Representations, 2018. [Online]. Available: https://openreview.
net/forum?id=r1Ddp1-Rb

[8] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2818–
2826.

1580


