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Abstract—This paper deals with a matrix completion problem
where each column vector belongs to a low-dimensional manifold.
A lot of methods for this problem have been proposed, and most
of them are based on the matrix rank minimization problem.
Though they work well when column vectors belong to a low
dimensional linear subspace, the estimation accuracy deteriorates
when vectors belong to a low-dimensional manifold. For matrix
completion problems with a low-dimensional manifold, recently,
neural network based methods have been proposed, however,
they do not achieve high completion accuracy for the problem
with high dimension or complex manifold. This paper proposes
an architecture for matrix completion based on clustering and
local projection, taking advantage of the fact that any manifold
can be locally approximated as a low-dimensional linear space.
Numerical simulations demonstrate the effectiveness of the pro-
posed method.

Index Terms—nonlinear matrix completion, dimensionality
reduction, autoencoder

I. INTRODUCTION

This paper deals with the matrix completion problem when
each column vector belongs to a low-dimensional manifold
(called nonlinear matrix completion). Matrix completion is
the problem of completing the missing elements in a given
matrix. The low-rank matrix completion problem has vari-
ous applications in the field of signal processing, including
collaborative filtering in recommendation systems [1], miss-
ing completion in image processing [2], channel estimation
in wireless communication [3], low-order model fitting and
system identification [4], and human-motion recovery [5].
Several methods of estimating missing entries have been
studied, and most of them solve matrix completion problems
by assuming that column or row vectors of a matrix belong
to a low dimensional linear subspace and formulating them as
matrix rank minimization problems [6]–[9]. However, in most
practical applications, the column vectors of a matrix belong
to a low dimensional manifold, these classical methods do not
achieve high performance.

To achieve higher recovery performance for real appli-
cations, some methods using neural networks for the non-
linear matrix completion problem have proposed [10], [11].
However, these architectures consist of a simple three-layer
neural network, which cannot provide high accuracy when the
manifold is complex or its dimension is high. For nonlinear

matrix completion problems, authors have proposed matrix
completion methods based on the assumption that a local
neighborhood of each vector on the manifold can be approxi-
mated as a low dimensional linear subspace [12]–[14]. These
approaches iteratively solve low-rank matrix completion prob-
lems for submatrices consisting of neighbor column vectors of
the matrix and achieves higher recovery performance. Based
on the ideas of these methods, this paper proposes a new neural
network architecture with local dimensionality reduction. This
architecture is based on the optimization problem in [14], and
this paper describes the relationship between the optimization
problem and an autoencoder used in the proposed method.
Numerical examples show the effectiveness of the proposed
method.

II. MATRIX COMPLETION AND LOW-RANK
APPROACH

A. LINEAR MATRIX COMPLETION

This section introduces the nonlinear matrix completion and
its solution.

Firstly, this paper describes a standard linear matrix com-
pletion problem. The matrix completion problem is a problem
which estimate missing entries of a matrixX ∈ RM×N . Many
classical methods assume that the column (or row) vectors of
the matrix belong to a low dimensional linear subspace and
solve the following matrix rank minimization problem,

Minimize rank(X)

subject to xm,n = x∗m,n for (m,n) ∈ Ω
, (1)

where Ω denotes a given index set and x∗m,n denotes a true
entry of the matrix to be recovered. Instead of ranks, a variety
of objective functions are used since the problem (1) is known
as NP-hard. This paper introduces a matrix rank minimization
approach [9], which uses an auxiliary variable matrix W ∈
RM×M . If the rank of X is low, there exists a low rank matrix
W ∈ RM×M such that X = WX is satisfied. Based on
this fact, [9] has formulated the low-rank matrix completion
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Fig. 1. Approximation idea for a manifold with k-means clustering

problem as follows,

Minimize ‖W ‖2F
subject to X = WX

xm,n = x∗m,n for (m,n) ∈ Ω

, (2)

where ‖ · ‖F denotes the Frobenius norm. To provide an
approximate solution of the above problem, (2) is relaxed as
follows,

Minimize ‖(I −W )X‖2F + γ‖W ‖2F
subject to xm,n = x∗m,n for (m,n) ∈ Ω

, (3)

where I denotes the identity matrix and γ > 0 is given con-
stant. Since this problem is the bi-convex quadratic problem
for X and W , a solution of this problem can be obtained by
an alternating optimization for X and W as follows,

Step 1 W ← W − µ
{
WXXT −XXT + γW

}
Step 2 X ← X − τ(I −W )T (I −W )X

Step 3 xm,n ← x∗m,n for (m,n) ∈ Ω

,

(4)

where µ and τ denote step size parameters.
However, in most practical applications, the column vectors

of a matrix do not belong to a low dimensional linear subspace.
Therefore, the classical methods which estimate the low-rank
matrix do not achieve high performance.

B. NONLINEAR MATRIX COMPLETION

In recent years, several methods which assume that the
column vector of the matrix belong to a low dimensional
manifold have been proposed. This paper introduces our
approach based on the idea which local area of each vector
on the manifold can be approximated by a low dimensional
linear subspace.

In [13], authors proposed a new algorithm, which applies
the k-means clustering method to xi w.r.t. Euclidean distance
and gives K submatrix completion problems of K clusters.
[13] defines diagonal matrix D(k) whose n-th diagonal entries

Fig. 2. Approximation idea for a manifold by dividing by multiple patterns
and averaging

d
(k)
n,n is defined by

d(k)
n,n =

{
1 if xn is a member of the k-th cluster
0 otherwise

, (5)

and then considers the following submatrix rank minimization
problem with (5) as follows,

Minimize
K∑
k=1

rank
(
XD(k)

)
subject to xm,n = x∗m,n for (m,n) ∈ Ω

. (6)

Figure 1 shows the idea to solve the nonlinear matrix com-
pletion problem based on eq. (6). Based on this idea, we can
solve the problem by minimizing each submatrix rank.

However, the algorithm corresponds with a low-rank ap-
proach based on the assumption that column vectors be-
long to multiple low dimensional linear subspaces, that is,
a manifold is approximated by piece-wise linear subspaces,
and the recovery accuracy decreases. To achieve high recov-
ery accuracy, [13] has proposed multiple k-means clustering
based algorithm, which uses k-means clustering for K ∈
{K1,K2, ...,Kc}, where Kc denotes the number of members
in the c-th clustering. Based on the idea, the submatrix
completion problem is formulated as follows,

Minimize
C∑
c=1

Kc∑
k=1

rank
(
XD(c,k)

)
subject to xm,n = x∗m,n for (m,n) ∈ Ω

, (7)

where D(c,k) denotes a diagonal matrix whose n-th diagonal
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element is defined by

d(c,k)
n,n =

 1
if xn is a member of the k-th cluster
of the c-th clustering (K = Kc)

0 otherwise
.

(8)

Figure 2 shows the idea of the problem (7). Based on this
idea, [13] proposed an algorithm which obtains each cluster
and minimizes its submatrix alternately. Furthermore, [14]
proposed a technique to solve the problem (7) substituting
the quadratic form (3) for the matrix rank. [14] reformulated
the problem (7) as follows,

Minimize
C∑
c=1

Kc∑
k=1

fγ

(
W (c,k),XD(c,k)

)
subject to xm,n = x∗m,n for (m,n) ∈ Ω

, (9)

where fγ is defined by

fγ

(
W (c,k),XD(c,k)

)
=
∥∥∥(I −W (c,k))XD(c,k)

∥∥∥2

F
+ γ

∥∥∥W (c,k)
∥∥∥2

F
(10)

Since this problem is the bi-convex quadratic problem for X
and W (c,k), the solution of this problem can be obtained by
an alternating optimization for X and W (c,k) for each (c, k).

However, the approximation accuracy of these methods
deteriorates when the manifold is complex or its dimension
is high. Therefore, this paper proposes a new neural network
architecture based on eq. (9) to improve the estimation accu-
racy.

III. NEURAL NETWORK ARCHITECTURE BASED
ON LOCAL DIMENSIONALITY REDUCTION

In this chapter, we consider eq. (9) as an optimization
problem for multiple autoencoders, and propose a new neural
network architecture for matrix completion.

First, we focus on the objective function in eq. (3). This
objective function can be rewritten as follows,

‖(I −W )X‖2F + γ‖W ‖2F =

N∑
n=1

‖xn −Wxn‖22 + γ‖W ‖2F ,

(11)

where xn denotes n-th column vector of X . If all entries of
X are known, the minimization problem of eq. (11) can be
considered as an optimization problem for autoencoders using
the linear operator W . Hence, eq. (3) can be interpreted as the
problem of optimizing the autoencoder parameters W and the
unknown elements of X . Therefore, in this chapter, eq. (9) is

Fig. 3. Local dimensionality reduction net G(c)

reformulated as follows using a neural network G(c)(xn),

Minimize gγ(θ)

subject to xm,n = x∗m,n for (m,n) ∈ Ω
, (12)

where gγ(θ) is defined as

gγ(θ) =

C∑
c=1

N∑
n=1

‖xn −G(c)(xn)‖22 + γ

C∑
c=1

L
(
G(c)

)
(13)

with θ =

{xm,n}(m,n)∈Ωc ,

{{{
W

(c,k)
l

}L+1

l=1

}Kc

k=1

}C
c=1

,

the neural network G(c)(xn) is defined as follows,

G(c)(xn) =
Kc∑
k=1

d(c,k)
n,n W

(c,k)
L+1 ReLU

(
W

(c,k)
L ReLU

(
· · ·ReLU

(
W

(c,k)
1 xn

)))
(14)

with the number of hidden layers L and the activation function
ReLU, and the regularization term L is defined as

L
(
G(c)

)
=

Kc∑
k=1

L+1∑
l=1

∥∥∥W (c,k)
l

∥∥∥2

F
. (15)

Note that eq. (12) is equivalent to eq. (9) when the number
of hidden layers L is 0. Figure 3 shows the overview of the
proposed architecture G(c). In Fig. 3, the upper row shows
the autoencoders, and the lower row shows the selector that
chooses which cluster xn belongs to.

Finally, this paper shows the algorithm for the minimiza-
tion problem (12) using k-means clustering and Adam op-
timizer [15] as shown in Algorithm 1. In Algorithm 1, this
paper utilizes the same heuristic technique used in [14] to
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give the regularization parameter γ which achieves the best
performance.

Algorithm 1 Matrix completion using k-means clustering and
autoencoders
Require: X(init), {Kc}Cc=1, γmax, γmin, ηγ , tmax

1: X ←X(init), t← 0, γ ← γmax

2: W
(c,k)
l ← I for all (c, k, l)

3: repeat
4: t← t+ 1, γ ← max(γ/ηγ , γmin)

5: for c = 1 to C do
6: Apply the k-means clustering to {xn}Nn=1, obtain Kc

clusters, and construct D(c,k)

7: end for
8: Update θ with D(c,k) using Adam to minimize gγ(θ)

9: until tmax < t

Ensure: X .

IV. NUMERICAL EXAMPLES

This section presents several numerical examples for the
nonlinear matrix completion. In this section, each n-th column
vector of X∗ ∈ RM×N is generated by the following mapping
function ψp : Rr 7→ R(r+p

p ) defined as

ψp(y) = (yα)|α|≤p ∈ R(r+p
p ), (16)

where α = [α1 · · · αr] denotes a multi-index of non-
negative integers, yα is defined as yα = yα1

1 · · · yαr
r ,

|α| = α1 + · · · + αr. The matrix X∗ is generated by
Up

[
ψp(y1),ψp(y2), · · · ,ψp(yN )

]
using Up ∈ RM×(r+p

p )

and Y = [y1 y2 · · · yN ] ∈ Rr×N generated by an
i.i.d. continuous uniform distribution whose supports are
[−0.5, 0.5] and [−1, 1], the elements of Y are normalized as
max |(Y )i,j | = 1. The index set Ω is generated using the
Bernoulli distribution with the given probability q = 0.3, for
which an index (m,n) belongs to Ω. This paper uses root
mean square error as

RMSE =

√√√√∑(m,n)∈Ωc

(
xm,n − x∗m,n

)2
|Ωc|

to evaluate each algorithm. All numerical experiments were
run on the PyTorch framework and used CUDA.

This paper applies the low-rank matrix-completion algo-
rithm IPMS [8], the nonlinear matrix completion method using
neural network (GAIN) [11], the locally low-rank approach
(LLRA) [14], and Algorithm 1 (proposed method) to several
matrix completion problems with M = 100, N = 10, 000,
and p = 3, 5, 7 for (16). A maximum iteration number of
tmax = 1, 000 is used for all algorithms. The parameters for
GAIN are the same in [11], and the parameters for IPMS,
LLRA, and proposed method are the same in [14]. In the

proposed method, the number of the clustering C and each
number of clusters Kc are {Kc}Cc=1 = {20, 30, 40} which are
used in [14].

Fig. 4. Average RMSE for 5 trials with p = 3 for (16)

Fig. 5. Average RMSE for 5 trials with p = 5 for (16)

Fig. 6. Average RMSE for 5 trials with p = 7 for (16)

The average RMSE of each algorithm is shown in Fig.
4-6 for r ∈ {2, 3, 4, 5, 6}. As can be seen, the proposed
method (L = 1, 2) has higher completion accuracy than the
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TABLE I
THE AVERAGE COMPUTATIONAL TIME COST (SECOND) OF THE

ALGORITHMS

IPMS [8] GAIN [11] LLRA [14]

7.9 [s] 362.7[s] 167.0[s]

Proposed(L = 0) Proposed(L = 1) Proposed(L = 2)

115.9 [s] 142.1[s] 167.8[s]

other methods, except for the case where p = 7, r = 7. The
optimization problems of the proposed method with L = 0
are equivalent to LLRA, but their accuracy is different (the
accuracy of the proposed method is inferior) because those
optimization methods are different. Therefore, it is possible
that the proposed method with L = 1, 2 can achieve better
accuracy by using better optimization method. The average
computation time of each algorithm is shown in Table I. It
can be seen that the computational time of LLRA is almost
equal to that of the proposed method with L = 2.

V. CONCLUSION

This paper deals with a nonlinear matrix completion prob-
lem, which is a problem of restoring missing entries in a
given matrix, where its column vectors belong to a low
dimensional manifold. This paper focuses on the fact that a
matrix completion problem can be regarded as the optimiza-
tion problem using autoencoders and proposes a new neural
network architecture to achieve higher estimation accuracy for
the matrix completion problem. Numerical examples show that
the estimation accuracy of the proposed method is higher than
the conventional method. As our future work, we formulate
the problem so that the clustering is treated as one part of
the optimization problem because the technique with cluster-
ing and optimizing parameters are heuristic in the proposed
algorithm.
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