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Abstract—Calibrating neural networks is crucial in appli-
cations where the decision making depends on the predicted
probabilities. Modern neural networks can be poorly calibrated.
They tend to overestimate probabilities when compared to the
expected accuracy. This results in a misleading reliability that
corrupts our decision policy. We show that the magnitude of
calibration error depends on the predicted confidence for each
sample. This prediction confidence calibration paradigm is then
applied to the concept of temperature scaling. We describe an
optimization method that finds the suitable temperature scaling
for each bin of a discretized value of prediction confidence. We
report extensive experiments on a variety of image datasets and
network architectures. Our approach achieves state-of-the-art
calibration with a guarantee that the classification accuracy is
not altered.

Index Terms—neural networks, network calibration, tempera-
ture scaling, Expected Calibration Error (ECE)

I. INTRODUCTION

Probabilistic machine learning algorithms output confidence
scores along with their predictions. Ideally, these scores should
match the true correctness probability. However, modern deep
learning models still fall short in giving useful estimates of
their predictive uncertainty. The lack of connection between
the model’s predicted probabilities and the confidence of
model’s predictions constitutes a key obstacle to the appli-
cation of neural network models to real-world problems, such
as decision-making systems. Quantifying uncertainty is espe-
cially critical in real-world tasks such as automatic medical
diagnosis [1] and perception tasks in autonomous driving [2].
A classifier is said to be calibrated if the probability values it
associates with the class labels match the true probabilities of
the correct class assignments. Modern neural networks have
been shown to be more overconfident in their predictions than
their predecessors even though their generalization accuracy
is higher, partly due to the fact that they can overfit on
the negative log-likelihood loss without overfitting on the
classification error [3].

Various confidence calibration methods have recently been
proposed in the field of deep learning to overcome the over-
confidence issue. Most calibration strategies perform calibra-
tion as a post processing step using an already trained model.
Post-hoc scaling approaches to calibration (e.g. Platt scaling
[4], isotonic regression [5], and temperature scaling [6]) are
widely used. They use hold-out validation data to learn a
calibration map that transforms the model’s predictions to
be better calibrated. Temperature scaling is the simplest and

most effective calibration method [6] and is the current stan-
dard practical calibration method. Guo et al. [6] investigated
several scaling models, ranging from single-parameter based
temperature scaling to more complicated vector/matrix scaling.
They reported poor performance for vector/matrix scaling
calibration. To avoid overfitting, Kull et al. [7] suggested
regularizing matrix scaling with an L2 loss on the calibration
model weights. Most of these calibration methods extend
single parameter temperature scaling by making the selected
temperature a linear function of the logits that are computed
for the class-set. For example, in vector scaling [6], each class
has its own temperature scaling.

In this study we take a different approach and propose
an extension of temperature scaling that assigns a suitable
temperature scaling to a given instance as a non-linear function
of the confidence of the predicted class (i.e. the probability
of the class with the highest logit). We show that, unlike
vector and matrix scaling [7] and other recently proposed
methods (e.g. [10]), we can easily find the optimal calibration
parameters and no hyper parameters are needed to be tuned.
The proposed calibration does not change the hard classifica-
tion decision, which allows it to be applied on any trained
network and guarantees to retain the original classification
accuracy in all the tested cases. We evaluate our method
against leading calibration approaches on various datasets and
network architectures and show that it outperforms existing
methods on improving the expected calibration error (ECE)
[11] calibration measure.

II. CALIBRATION PROBLEM FORMULATION

Let x be an input vector to a classification network with
k classes. The output of the network is a vector of k values
z1, ..., zk. Each of these values, which are also called logits,
represents the score for one of the k possible classes. The
logits’ vector is transformed into a probabilities vector by a
softmax layer: p(y = i|x) = exp(zi)∑

j exp(zj)
. Although these values

uphold the mathematical terms of probabilities, they do not
represent any actual probabilities of the classes.

The predicted class for a sample x is calculated from
the probabilities vector by ŷ = argmaxi p(y = i|x) =
argmaxi zi and the predicted confidence for this sample is
defined by p̂ = p(y = ŷ|x). The accuracy of the model
is defined by the true probability that the predicted class ŷ
is correct. The network is said to be calibrated if for each
sample the confidence is equal to the accuracy. For example,
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if we collect ten samples, each having an identical confidence
score of 0.8, we then expect an 80% classification accuracy
for the ten samples.

A popular metric used to measure model calibration is
the ECE [11], which is defined as the expected absolute
difference between the model’s confidence and its accuracy.
Since we only have finite samples, the ECE cannot in practice
be computed using this definition. Instead, we divide the
interval [0, 1] into m equispaced bins, where the ith bin is
the interval

(
i−1
m , i

m

]
. Let Bi denote the set of samples with

confidences p̂ belonging to the ith bin. The accuracy Ai of
this bin is computed as Ai =

1
|Bi|

∑
t∈Bi

1 (ŷt = yt), where
1 is the indicator function, and ŷt and yt are the predicted
and ground-truth labels for the tth sample. Ai is the relative
number of correct predictions of instances that were assigned
to Bi based on the confidence. Similarly, the confidence Ci

of the ith bin is computed as Ci = 1
|Bi|

∑
t∈Bi

p̂t, i.e., Ci

is the average confidence of all samples in the bin. The ECE
can be approximated as the weighted average of the absolute
difference between the accuracy and confidence of each bin:

ECE =

m∑
i=1

|Bi|
n
|Ai − Ci| (1)

where n is the number of samples in the validation set. Note
that Ai > Ci means the network is under-confident at the ith

bin and Ci > Ai implies that the network is over-confident.
One disadvantage of ECE is its uniform bin width. For a

well trained model, most of the samples lie within the highest
confidence bins; hence, these bins dominate the value of the
ECE. For this reason, we can consider another metric, AdaECE
(Adaptive ECE), where bin sizes are calculated so as to evenly
distribute samples between bins [12]:

AdaECE =
1

m

m∑
i=1

|Ai − Ci| (2)

such that each been bin contains 1/m of the data points with
similar confidence values.

III. TEMPERATURE SCALING BASED ON THE PREDICTED
CONFIDENCE

Temperature Scaling (TS) is a simple yet highly effective
technique for calibrating prediction probabilities [6]. It uses
a scalar temperature parameter T > 0 to rescale logit scores
before applying the softmax function to compute the class
distribution. Since the same T is used for all classes, the
softmax output with scaling has a monotonic relationship
with the unscaled output. To get an optimal temperature
T for a trained model, we can minimize the negative log
likelihood for a held-out validation dataset. In the case of a
single temperature parameter, direct minimization of the ECE
measure (1) on the validation set was shown to yield better
calibration results [13]. This is not surprising since we directly
optimize the same calibration measure on the validation set
that is finally evaluated on the test set.

The essence of calibration involves manipulating the predic-
tion confidence (the probability of the most likely class). Since

the goal of calibration is making the confidence prediction
more accurate, it makes sense to calibrate the network based
on this quantity which is a non-linear function of the logit
vector. In this study we investigated a temperature scaling
calibration strategy where the most suitable temperature of
a given instance depends on its predicted confidence.

Let f : [0, 1] → [0,∞) be a function from the con-
fidence probability value to a calibration temperature. This
function f is denoted Confidence based Temperature (CBT).
The calibration of an instance x is done as follows. Let the
network output logits be z = (z1, ..., zk) and let c(z) =
maxi exp(zi)/(

∑
j exp(zj)) be the corresponding confidence.

The calibrated prediction probabilities are:

p(y = i|x) = exp(zi/f(c(z)))∑k
j=1 exp(zj/f(c(z))

, i = 1, . . . , k. (3)

We use a validation set to learn the CBT function. It is
difficult to directly estimate the model’s accuracy distribution
and therefore, similar to the computation of ECE measure, we
divide the validation set into bins according to their confidence
values within the unit interval. We use the ECE measure as the
objective score when finding the optimal CBT function. We
allow a different temperate scaling for each ECE bin which
results in a piece-wise constant form of the CBT function.
We chose here to define our objective function based on the
adaECE variant rather than ECE since in ECE accuracy at
low confidence bins are computed using a small number of
validation samples which makes the temperature estimates less
robust.

Let Ai and Ci be the accuracy and confidence of the points
in the i-th bin set Bi. Denote the average confidence at bin
i after scaling all the instances in Bi by a temperature Ti by
Ci(Ti):

Ci(Ti) =
1

|Bi|
∑
t∈Bi

k
max
j=1

exp(ztj/Ti)∑k
l=1 exp(ztl/Ti)

(4)

s.t. zt1, ..., ztk are the logit values computed by the network
that is fed by xt. To find the best CBT function we look for a
temperature set that minimizes the following adaECE score:

L(T1, ..., Tm) =
1

m

m∑
i=1

|Ai − Ci(Ti)| . (5)

We can perform the minimization of L for each bin separately.
We can further apply a grid search to find Ti that satisfies Ai =
Ci(Ti). It can be easily verified that Ci(Ti) is a monotonically
decreasing function of Ti. We can thus apply a fast binary
search to find the optimal temperature. Note that the minimum
confidence value is 1/k where k is the number of classes.
Hence, if the average accuracy is less than 1/k we cannot
make the confidence coincides exactly with the accuracy. This
usually occurs at the lowest bin.

We can thus find temperature values T1, ..., Tm such that
the adaECE score (5) of the validation is exactly zero. This
does not imply, however, that the adaECE (2) score of the
calibrated validation set is zero. It can easily be verified that
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a network that is more confident at point x than at point y
can become less confident at x than y after a temperature
scaling calibration (even if the same temperature was applied
to the two data points). The calibration can thus change the
order of the validation points when sorted according to their
confidence. This alters the partition of the validation set into
bins and causes that the adaECE score (2) of the calibrated
validation set is not necessarily zero. We can thus apply
the optimization of the adaECE score (5) on the calibrated
validation set in an iterative manner. At each step we minimize
the score (5) given the current calibration of the validation
set. To set the number of iterations we compute the adaECE
score of the validation set after each iteration and choose the
number of iterations that yields the minimal adaECE score.
The number of bins is determined in a similar way.

At the inference phase we calibrate a given point x by
tracking its bin membership at each iteration. Denote the
temperature-set learned at the s-th iteration by Ts,1, ..., Ts,m.
The temperature used to calibrate x at the s-th iteration is
Ts,b(x,s) such that b(x, j) is the bin containing the confidence
value of the calibration of x at the j-th iteration. This bin is
found based on the boundaries of the learned bins and the
current confidence that is computed by the scaled logits of
point x at the s-th iteration:

zi/(T1,b(x,1) × ...× Ts−1,b(x,s−1)), i = 1, ...,m.

Algorithm 1 Confidence based Temperature Scaling (CBT) -
Train

input: A validation dataset x1, ..., xn. Each xt is fed into a
k-class classifier network to produce logits zt1, ..., ztk.
for s = 1, ..., S do

Divide the dataset into m equal size sets Bs1, ..., Bsm

based on the confidence values.
for i = 1, ...,m do

Compute the average accuracy Asi and confidence
Csi based on the points in Bsi.

Apply a binary search to find a temperature Tsi that
satisfies Asi = Csi(Tsi).

Divide all the logits of the points in Bsi by Tsi.
end for

end for
output: The temperature sets and the bins’ interval borders
for all the iterations.

The train and inference phases of the CBT algorithm are
summarized in Algorithm boxes 1 and 2 respectively. CBT has
the desirable property that it does not affect the hard-decision
accuracy since the same temperature scaling is applied to all
the logits. This guarantees that the calibration does not impact
the accuracy. Note that both vector and matrix scaling do affect
model accuracy and may decrease it.

There are several other calibration methods based on non
linear transformations of logits vectors. Gupta et al. [10] built
a calibration function by approximating the empirical cumu-
lative distribution using a differentiable function via splines.

Algorithm 2 Confidence based Temperature Scaling (CBT) -
Inference

input: A data point x with network outputs logits z1, ..., zk
and a division of bins B obtained from training step.
for s = 1, ..., S do

Compute the confidence: c = maxi
exp(zi)∑
j exp(zj)

.
Find l s.t. c is in the bin defined by Bsl.
zi ← zi/Tsl, i = 1, ..., k

end for
output: The calibrated prediction is:

p(y = i|x) = exp(zi)∑
j exp(zj)

, i = 1, ..., k
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Fig. 1: (a) Optimal temperature for each bin in four iterations
of CBT for Imagenet trained with ResNet152. (b) ECE values
for each bin before and after temperature scaling for Imagenet
trained with ResNet152.

Note that this calibration method can change the accuracy.
Ji et al. [14] extended TS to a bin-wise setting, denoted by
BTS, by setting separate temperatures for various confidence
subsets. The main difference between BTS and our approach
is the learning procedure. BTS is trained by maximizing the
log-likelihood function. We proposed an iterative scheme that
directly minimizes the gap between the confidence and the
accuracy at each bin. In the next section we show that CBT
consistently yields better calibration results than BTS on a
large set of tasks.

IV. EXPERIMENTAL RESULTS

We first illustrate the CBT algorithm on the ImageNet
dataset [15] with network architectures ResNet152 [16] and
DenseNet161 [17] trained with a cross-entropy loss. Fig. 1a
presents the CBT temperature in each bin that minimizes the
adaECE score for each one of the four iterations performed
by the algorithm. As we go up in the bins’ range, we can
see an increase in the optimal temperature per bin. This is
because samples in higher bins are more over-confident than
samples in lower bins, so that higher temperatures for samples
in these high over-confident bins should bring the average
confidence closer to the average accuracy. However, a single
temperature does not take this difference in over-confidence
through bins into account. We can also see that the optimal
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Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05
Pre T TS CBT Pre T TS CBT Pre T TS CBT Pre T TS CBT

CIFAR-100

ResNet-50 17.52 3.42 1.25 (5) 6.52 3.64 1.08 (2) 15.32 2.38 1.25 (5) 7.81 4.01 1.30 (3)
ResNet-110 19.05 4.43 1.95 (3) 7.88 4.65 2.19 (2) 19.14 3.86 2.11 (3) 11.02 5.89 1.82 (2)
Wide-ResNet-26-10 15.33 2.88 1.43 (5) 4.31 2.70 1.37 (4) 13.17 4.37 1.40 (3) 4.84 4.84 0.93 (2)
DenseNet-121 20.98 4.27 2.20 (3) 5.17 2.29 1.50 (5) 19.13 3.06 1.79 (2) 12.89 7.52 1.52 (5)

CIFAR-10

ResNet-50 4.35 1.35 0.75 (2) 1.82 1.08 1.02 (4) 4.56 1.19 0.63 (2) 2.96 1.67 1.05 (2)
ResNet-110 4.41 1.09 0.74 (2) 2.56 1.25 0.81 (2) 5.08 1.42 0.26 (4) 2.09 2.09 0.65 (3)
Wide-ResNet-26-10 3.23 0.92 0.80 (2) 1.25 1.25 0.88 (2) 3.29 0.86 0.69 (5) 4.26 1.84 0.50 (2)
DenseNet-121 4.52 1.31 0.39 (2) 1.53 1.53 0.75 (2) 5.10 1.61 0.73 (2) 1.88 1.82 0.78 (2)

Tiny-ImageNet ResNet-50 15.32 5.48 1.25 (3) 4.44 4.13 0.99 (4) 13.01 5.55 1.19 (3) 15.23 6.51 1.30 (3)

TABLE I: ECE (%) computed for different approaches for pre-temperature scaling, post-single temperature scaling and post
confidence-based temperature scaling (with the number of iterations in brackets). T ≈ 1 indicates an innately calibrated model.

Dataset Model Uncalibrated TS Vector Scaling MS-ODIR Dir-ODIR Spline BTS CBT

CIFAR-100

ResNet-110 18.480 2.428 2.722 3.011 2.806 1.868 1.907 1.818
ResNet-110-SD 15.861 1.335 2.067 2.277 2.046 1.766 1.373 1.299
Wide-ResNet-32 18.784 1.667 1.785 2.870 2.128 1.672 1.796 1.317
DenseNet-40 21.159 1.255 1.598 2.855 1.410 2.114 1.336 1.307
Lenet-5 12.117 1.535 1.350 1.696 2.159 1.029 1.659 1.249

CIFAR-10

ResNet-110 4.750 1.224 1.092 1.276 1.240 1.011 1.224 0.982
ResNet-110-SD 4.135 0.777 0.752 0.684 0.859 0.992 1.020 0.867
Wide-ResNet-32 4.512 0.905 0.852 0.941 0.965 1.003 1.064 1.049
DenseNet-40 5.507 1.006 1.207 1.250 1.268 1.389 0.957 0.904
Lenet-5 5.188 1.999 1.462 1.504 1.300 1.333 1.865 1.614

ImageNet DenseNet-161 5.720 2.059 2.637 4.337 3.989 0.798 1.224 0.845
ResNet-152 6.545 2.166 2.641 5.377 4.556 0.913 1.165 0.935

SVHN ResNet-152-SD 0.877 0.675 0.630 0.646 0.651 0.832 0.535 0.537

TABLE II: ECE for top-1 predictions (in %) using 25 bins (with the lowest in bold and the second lowest underlined) on
various image classification datasets and models with different calibration methods.

temperatures given to each bin are reduced through iterations
until all temperatures are converged to 1. Fig. 1b shows the
ECE score in each bin before and after calibration with TS
and CBT for ResNet152 trained on a test set from ImageNet.
The ECE in bin i is defined by: ECEi =

|Bi|
n |Ai − Ci| such

that the total ECE score is the sum of the ECE of all bins.
The results show that the ECE in each bin achieved by CBT
is almost always lower or equal to the ECE achieved by TS.

We implemented the CBT method on various image classi-
fication tasks to test the algorithm’s performance. The exper-
iment setup followed the setup of [13] and included several
pre-trained deep neural networks which are available online 1,
trained on the following image classification datasets:

1) CIFAR-10 [15]: This dataset has 60,000 color images of
size 32×32, divided equally into 10 classes. We used a
train/validation/test split of 45,000/5,000/10,000 images.

2) CIFAR-100 [15]: This dataset has 60,000 color im-
ages of size 32 × 32, divided equally into 100
classes. We again used a train/validation/test split of
45,000/5,000/10,000 images.

3) Tiny-ImageNet [18]: Tiny-ImageNet is a subset of Ima-
geNet with 64 × 64 dimensional images, 200 classes and

1https://github.com/torrvision/focal calibration

500 images per class in the training set and 50 images
per class in the validation set. The image dimensions
of Tiny-ImageNet are twice those of the CIFAR-10/100
images.

Table I compares the ECE% (computed using 15 bins)
obtained by evaluating the test set. Although adaECE was
used as the objective function in our algorithm, ECE is still
the standard way to report calibration results, so we used it
to compare our calibration results with previous studies. The
results are divided into ECE before calibration, after scaling
by a single temperature (TS) and after our Confidence based
Temperature Scaling (CBT). The optimal TS was achieved by
a greedy algorithm to minimize the ECE calibration score [13].
The CBT was trained on 16 bins over a validation set. Along
with the cross-entropy loss, we tested our results on three other
models which were trained on different loss functions:

1) Brier loss [19]: The squared error between the predicted
softmax vector and the one-hot ground truth encoding.

2) MMCE (Maximum Mean Calibration Error) [20]: A
continuous and differentiable proxy for calibration error
that is normally used as a regulariser alongside cross-
entropy.

3) Label smoothing (LS) [21]: Given a one-hot ground-
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truth distribution q and a smoothing factor α (hyper-
parameter), the smoothed vector s is obtained as si =
(1−α)qi +α(1−qi)/(k− 1), where si and qi denote
the ith elements of s and q respectively, and k is the
number of classes. Instead of q, s is treated as the ground
truth. The reported results were obtained from LS-0.05
with α = 0.05, which was found to achieve the best
performance [13].

The comparative calibration results are presented in Table
I. The number of iterations of the CBT algorithm for each
comparison appears in brackets. As can be seen, the ECE score
after CBT calibration was lower than the ECE after TS in all
cases.

In another set of experiments, we followed the setup in [10].
In addition to CIFAR-10 and CIFAR-100, we evaluated our
CBT method on the SVHN dataset [22] and ImageNet [18].
Pre-trained network logits are available online 2. The CBT was
compared to TS, vector scaling, two variants of matrix scaling
[7], BTS [14] and Spline fitting [10]. As shown in Table II,
CBT achieved the best or second best results in most cases.

V. CONCLUSION

Calibrated confidence estimates of predictions are critical
to increasing our trust in the performance of neural networks.
As interest grows in deploying neural networks in real work
decision making systems, the predictable behavior of the
model will be a necessity especially for critical tasks as
automatic navigation and medical diagnosis. In this work, we
introduced a simple and effective calibration method based the
prediction confidence. Most calibration methods are trained
by optimizing the cross entropy score. CBT function learning
can be done by explicitly optimizing the adaECE measure. We
compared our CBT method to various state-of-the-art methods
and showed that it yielded the lowest calibration error in many
of our experiments. CBT is very easy to train and there is no
need to tune any hyper-parameter. we believe that it can be
used in place of the standard temperature scaling method.
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