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Abstract—Today’s world extensively depends on analytics of
high dimensional sensor time-series, and, extracting informative
representation. Sensor time-series across various applications
such as healthcare and human wellness, machine maintenance
etc., are generally unlabelled, and, getting the annotations is
costly and time-consuming. Here, we propose an unsupervised
feature selection method exploiting representation learning with
a choice of best clustering and recommended distance measure.
Proposed method reduces the feature space, to a compressed
latent representation, known as Auto-encoded Compact Sequence
of features, by retaining the most informative parts. It further
selects a set of discriminative features, by computing the sim-
ilarity / dissimilarity among the features in latent space using
the recommended best distance measure. We have experimented
using diverse time-series from UCR Time Series Classification
archive, and observed, proposed method consistently outperforms
state-of-the-art feature selection approaches.

Index Terms—feature selection, unsupervised learning, repre-
sentation learning

I. INTRODUCTION

High dimensional time-series collected from diverse sen-
sors, are being increasingly used for performing analytics in
real-world applications. Commonly, non-informative features
exist in the extracted feature set from time-series, and hence,
causes overfitting. Reduction of feature space with optimal set
of features is a prime need in machine learning(ML).

Feature recommendation is the process of selecting a
smaller set of extracted features, which, when combined
captures most informative parts of the dataset. Annotations are
required in many established scenarios, to select appropriate
features, with maximum class separation. However in real
world, annotations are scarce, labelling by experts is costly
and manual labelling is tedious and time-consuming. Thus,
unsupervised feature derivation is an important need across
diverse applications like cardiac abnormality detection (health-
care) [1], fault detection in machinery analysis etc.

In this work, we propose an unsupervised feature recom-
mendation method exploiting representation learning [2] and
the choice of best distance measure and clustering. The key
contributions of proposed method are:
(1) Learning latent representation of features: Proposed
method computes the discriminative properties of the fea-
tures in an highly informative representation space. A low-
dimensional representation (Auto-Encoded Compact Sequence

- AECS) [3] of the features are learned using a multi-layer
auto-encoder which captures its most important parts.
(2) Consistent clustering with recommended distance mea-
sure in latent space: Subsequently, we perform agglomerative
hierarchical clustering on the learned representations to form
consistent clusters i.e. iteratively forming clusters until it
can’t be broken into further subclusters. A choice of distance
measure is recommended among Chebyshev, Manhattan and
Mahalanobis distance for forming the clustering, ensuring
generalization across diverse datasets.
(3) Selection of most important features: Corresponding
to each consistent cluster, redundant features are removed
using pairwise correlation score, and an triangular distance
matrix is computed on the remaining feature representations,
exploiting the recommended distance measure, based on which
discriminative features are chosen.
(4) Extensive experimentation on diverse time-series: We
have experimented using 15 time-series from UCR Time
Series Classification Archive [4] corresponding to different
application domains. We observed, proposed method outper-
forms both unsupervised and supervised state-of-the-art (SoA)
feature selection approaches.

II. RELATED WORKS

Feature selection has been an important area of research due
to its impact in diverse application domains. Broadly, feature
selection approaches can be classified into two types - (1)
Wrapper based and (2) Filter based methods. Wrapper tech-
niques like Forward feature selection [5] and Backward feature
elimination [6] employs a specific machine learning algorithm
to select a subset of features which maximizes the performance
of the algorithm. On the other hand, filter based methods
such as mRMR [7], focuses on each features independently
to remove or filter out the features having low discriminative
properties or are redundant w.r.t other features. Conditional
Mutual Information Maximization criterion (CMIM) [8] is
another such method, which selects features based on max-
imization of conditional mutual information along with the
class information. Correlation based feature selection (CFS)
[9] selects features having maximum correlation with respect
to the classes to predict, and minimum intercorrelation among
the other features. Another method focusses on selection of
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Fig. 1: (a) Schematic architecture of multi-layer Seq-2-Seq auto-encoder for computing feature representation (left) and (b)
Framework for proposed unsupervised feature selection method (right)

a subset of features constrained to maximization of the Joint
mutual information (JMI) [10] between the selected features.

In recent times, there has been growing research in unsuper-
vised feature selection techniques as well. Multi-Cluster Fea-
ture Selection (MCFS) [11], an unsupervised feature selection
method, computes the correlation between different features
exploiting spectral analysis, which becomes essential in pre-
serving the multi-cluster structure of the data. Spectral Feature
Selection (SFS) [12] constructs a pairwise similarity graph
and selects the features from the spectrum of the graph. An-
other method, Nonnegative Discriminative Feature Selection
(NDFS) [13] performs spectral clustering and feature selection,
in conjunction, to select the optimal subset of features without
the use of any labels. Subspace clustering guided unsupervised
feature selection (SCUFS) [14], is another method, which
learns multi-subspace structure of data in a global similarity
matrix, using representation based subspace learning.

III. METHODOLOGY

Proposed feature selection method can be used for any sets
of features extracted from the time-series, and hence, can be
generalized across multiple domains.

As an exemplary feature set, we experiment using 392
rich features extracted from the raw time-series, known as
Signal Property based Generic Features (SPGF) [15]. Diverse
Temporal, Spectral and Wavelet based features are extracted
from the raw time-series which encapsulates its morphology,
statistics, randomness and regularity. The features extracted are
stored in form of a matrix XFeat ∈ RN×F , where N indicates
total instances and F indicates the number of features. In this
section, we describe our unsupervised feature recommendation
method in details.

A. Consistent clustering with recommended distance measure
in latent space

1) Learning latent representation of features: Feature ma-
trix XFeat is transposed, such that, the features are represented

as different instances in the dataset i.e X ′
Feat ∈ RF×N .

Using X ′
Feat, an auto-encoded compact sequence (AECS) [3]

[16] for each of the features are learned using a Seq-2-Seq
LSTM multi-layer auto-encoder [17] [18] as shown in Fig.
1(a). Assuming the length of representation to be l, a latent
feature matrix AECSFeat ∈ RF×l is formed, where each row
represents a highly informative representation of each feature.

2) Forming consistent feature clusters: After the compact
representation for each feature is learned, agglomerative hi-
erarchical clustering [19] is performed on it using a method
to find the best choice of distance measure. Three different
distance measures - Chebyshev, Manhattan [20] and Maha-
lanobis [21] have been used to evaluate the distance between
any two time-series for hierarchical clustering. To find the best
distance measure among the above three, and its corresponding
clustering, we use an internal clustering measure, Modified
Hubert Statistic (T ) [22].

For any particular dataset, extracting the knowledge of the
number of clusters to be formed, is a very challenging task.
To address this, we devise a mechanism called consistent
clustering to discover the optimal number of groups of features
without any annotations or prior knowledge. We build upon the
assumption, that the clusters which are inherently present in a
dataset, cannot be broken further into subgroups. It iteratively
groups the features using the above mentioned clustering
technique, incrementing the number of groups to be formed by
1 in each iteration. If at any iteration, we observe the majority
of the features are retained in the same group as in the previous
iteration and minimal number of features have been separated
to form a new group, then it signifies that the groups can not
be divided further optimally and the process is stopped. We
define a threshold T as the stopping criterion, to track if the
new cluster formed at an iteration has lower than T fraction of
the instances of the dataset. It infers the new group formed is
very small in size, and the set of previous groups are returned
as the consistent clusters.
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B. Selection of most important features

1) Removing redundant features using correlation coeffi-
cient: In each of the consistent groups of features formed,
we first compute the Pearson’s correlation coefficient [23] on
the learned representation AECS for each pair of features.
Considering xAECS and yAECS as learned representation
of features x and y grouped in the same cluster, Pearson’s
correlation coefficient is computed as:

P (x, y) =

∑
(xAECS −mx)(yAECS −my)

2
√∑

(xAECS −mx)2
∑

(yAECS −my)2
(1)

where mx and my are the mean of xAECS and yAECS

respectively.
If a pair of features have a correlation coefficient above

a predefined threshold Corrthresh, we infer the features are
similar to each other, and, discard one of the features chosen
randomly from the pair. This helps to reduce the redundancy
in each of the feature groups formed.

2) Selection of discriminative features based on choice
of best distance measure: After discarding the redundant
features using correlation coefficient, from each of the groups,
we exploit the best distance measure chosen during HC-
AECS to select the list of recommended features. A triangular
distance matrix is computed by finding the distance between
each pair of AECS of the remaining features (after remov-
ing redundant features) for each cluster separately. Suppose
[f c

1, f
c
2, f

c
3, ....., f

c
n] be the remaining features in consistent

cluster c. The triangular distance matrix Dist matc can be
computed as

Dist matc[i, j] = dbest(AECS(f c
i), AECS(f c

j)), (2)

where dbest is the best distance measure recommended by
HC-AECS and AECS(x) denotes the learned representation
of the corresponding feature x.

In the triangular distance matrix formed for each of the
groups, pairs of features having highest distance between
them i.e. most distant are selected in the list of recommended
features. This ensures maximum separation between selected
features, thus minimizing redundancy between them. The
number of such distant pairs (n) to be chosen from each group
is taken as a hyperparameter. For example, if n is 3 it suggests
the top 3 distant pairs of features from each group are added
in the list of recommended features. The detailed algorithm
and complete framework for proposed method are depicted in
Algorithm 1 and Fig. 1(b) respectively.

IV. EXPERIMENTAL ANALYSIS

A. Dataset Description

We evaluate our proposed method on 15 uni-variate time-
series from UCR Time Series Classification Archive [4],
spread across diverse application domains collected from
sensors like ECG, Camera, Process control sensors etc. The
number of timesteps of the time-series datasets considered
varies widely from 80 to 500. Furthermore, we experiment
with both binary and multi-class time-series, where number
of classes ranges from 2 to 10.

Algorithm 1: Unsupervised Feature Selection

Input : X∈ RN×t×d: Input time-series,
Corrthresh: Threshold for correlation score
n: Number of pairs chosen from each cluster

Output: FeatRec: List of recommended features
Function Feature Selection X

▷ Compute complete feature set for X
XFeat ← extract features(X);
▷ Transpose feature matrix
X ′

Feat ← Transpose(XFeat);
▷ Learn compact feature representation (AECS)
AECSFeat ← Multilayer auto-encoder (X ′

Feat);
▷ Consistent clustering on AECSFeat to group
features based on their similarity in latent space
{C1, ., Ck}, dbest ← Consistent Cls(AECSFeat)
▷ Initialize list of recommended features
FeatRec ← {};

forall Feature cluster Ci do
▷ Remove features in Ci having correlation ≥
Corrthresh w.r.t other features.
▷ Compute distance matrix having distance
between each pair of remaining features in Ci

using best distance measure dbest
Dist mat ← distance matrix(Ci, dbest);
▷ Add n most distant feature pairs from
Dist mat in FeatRec

end
return FeatRec;

end

B. Unsupervised Feature Selection

1) Formation of consistent feature clusters:: After extrac-
tion of features from the raw time-series, the feature matrix is
transposed and a compact representation of all the 392 features
is computed using a multi-layer Seq-2-Seq auto-encoder. For
experimentation, the length of the AECS representation (l) is
considered 12. We use Adam optimizer [24] with a learning
rate of 0.004, and the model is run on 100 epochs. Consistent
clustering is performed on the resulting latent representation
(AECS) matrix (AECSFeat ∈ R392×12), thus producing a
number of feature clusters. Fig. 2(a)(i) and (b)(i) depicts the
T-SNE plots [25] showing the consistent clusters of features
formed in latent space for datasets ECG5000 and MiddlePha-
lanxTW respectively.

2) Selection of features:: For removing redundant features
using correlation coefficient from each of the consistent clus-
ters, we chose a threshold 0.96 i.e, if a pair of feature
representations have correlation score greater than 0.96, one of
features are discarded randomly. Subsequently, in each of the
consistent clusters, a triangular distance matrix is computed for
the remaining features using the best distance measure chosen
by HC-AECS. We have considered the number of most distant
pairs(n) from the distance matrix of each consistent cluster to
select the discriminating features. In our experimentation, we
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(a)(i) ECG5000 (a)(ii) ECG5000

(b)(i) MiddlePhalanxTW (b)(ii) MiddlePhalanxTW

Fig. 2: (a) (i) TSNE plot of AECS of 392 SPGF features and (ii) Heat map showing the triangular distance matrix for consistent
cluster 1 of ECG5000 and (b) (i) TSNE plot of AECS of 392 SPGF features and (ii) Heat map showing the triangular distance
matrix for consistent cluster 1 of MiddlePhalanxTW

TABLE I: Performance comparison (in terms of accuracy) of recommended features from proposed method and different SoAs

Sensor Dataset Unsupervised methods Supervised methods Rank
Proposed MCFS SFS NDFS SCUFS CMIM mRMR CFS JMI (Proposed)

ProximalPhalanxOAG 0.795 0.766 0.488 0.849 0.834 0.776 0.82 0.765 0.805 5
ProximalPhalanxOC 0.8 0.835 0.684 0.821 0.8 0.819 0.787 0.684 0.807 5

MedicalImages 0.699 0.650 0.514 0.637 0.629 0.661 0.572 0.579 0.546 1
Camera DistalPhalanxOAG 0.778 0.803 0.643 0.733 0.805 0.755 0.77 0.753 0.813 4

(Imagine outline MiddlePhalanxTW 0.591 0.566 0.401 0.609 0.529 0.579 0.586 0.531 0.559 2
as time-series) DistalPhalanxOC 0.728 0.635 0.630 0.760 0.766 0.787 0.76 0.688 0.765 6

DistalPhalanxTW 0.680 0.656 0.205 0.780 0.715 0.73 0.735 0.7 0.755 7
ProximalPhalanxTW 0.680 0.735 0.450 0.745 0.79 0.713 0.718 0.68 0.73 7
MiddlePhalanxOC 0.600 0.558 0.647 0.580 0.62 0.528 0.547 0.58 0.508 3

Yoga 0.680 0.638 0.536 0.680 0.629 0.72 0.593 0.713 0.567 3
Food Spectrograph Strawberry 0.920 0.868 0.643 0.897 0.871 0.819 0.808 0.786 0.829 1

ECG ECG5000 0.880 0.891 0.584 0.878 0.879 0.887 0.88 0.87 0.879 3
Vibration FordB 0.855 0.793 0.512 0.772 0.797 0.536 0.86 0.831 0.664 2
Simulated ChlorineConcentration 0.590 0.616 0.533 0.612 0.572 0.574 0.586 0.487 0.567 3

SyntheticControl 0.920 0.647 0.167 0.630 0.633 0.933 0.7 0.903 0.85 2
Average Accuracy 0.746 0.710 0.509 0.732 0.725 0.721 0.715 0.703 0.710 Average

Reduction in avg. accuracy than prop. method - 0.036 0.237 0.014 0.022 0.025 0.031 0.043 0.036 Rank
Average Rank 3.6 4.4 8.3 3.7 4.2 4.2 4.7 6.2 5.1 = 3.6

have considered n = 3. If the value of n is increased, higher
number of features are recommended by proposed method, and
hence can be used as a hyper-parameter to control the number
of important features to be selected. We have experimented us-
ing the 392 SPGF features extracted from the raw time-series
as described above. Examples of lower triangular distance
matrix in form of heatmap are shown in Fig. 2(a)(ii) and (b)(ii)
for datasets ECG5000 and MiddlePhalanxTW corresponding
to a consistent cluster (cluster 1) across the feature members of
cluster 1. For ECG5000, we observe feature pairs (273,367),
(115,273) and (1,115) are most distant, and hence, {1, 115,
273, 367} are returned as the most representative features from
cluster 1. Here feature 1 indicates Mean on Approximation
coefficients of First Level Discrete Wavelet Transform (DWT)
[26], 115 indicates Zero Crossing Rate [27] of time domain

signal, 273 indicates Standard deviation of windowed Zero
Crossing Rate of DWT (First level approximation coefficients
of DWT) and 367 indicates Mean of windowed Skewness in
frequency domain.

C. Results

For evaluating the discriminative properties of the selected
features, we consider a classification setting where only the
recommended features are used for training and inference.
The training set is used for feature selection and training a
TreeBagger classifier [28] using the selected features, while
the testing set is reserved for inferencing only. We compare
proposed method with four state-of-the-art unsupervised fea-
ture selection methods - MCFS, SFS, NDFS and SCUFS. For
fair comparison, if k be the number of features recommended
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by proposed method, we consider top-k ranked features by the
SoA feature selection techniques, as they do not recommend
the number of features to be selected. The inference results
(in accuracy) on the test set for proposed method and the
SoAs are provided in Table I. We observe proposed method
outperforms all the benchmark approaches both in terms of
average accuracy within a range of 23.7 % to 1.4 %, and also
average rank.

Furthermore, we also compare our approach with supervised
selection techniques like mRMR, CMIM, CFS and JMI. We
observe proposed method outperforms even supervised feature
selection techniques, which uses label information, within a
range of 4.3 % to 2.5 %, across the 15 datasets. Further,
we observe proposed method achieves the lowest average
rank, among all other methods, where rank 1 denotes high-
est performance. In another comparison, w.r.t a supervised
setup considering entire feature set of SPGF with Support
Vector Machine (SVM) Grid search [29] as classifier and
recommended features of our method using same classifier and
identical hyper parameters with the same datasets we noticed
an improvement in 8 out of 15 datasets with 2.1% increase in
average accuracy.

V. CONCLUSION

Here, we have presented a robust unsupervised feature
selection method using representation learning and forming
hierarchical clustering with a choice of best distance measure
chosen among Chebyshev, Manhattan and Mahalanobis dis-
tance. The distance measure recommended by best clustering
selects the important features considering their relevance in
terms of their respective pairwise distance inside the consistent
clusters formed using the compact latent representation. We
have performed extensive analysis considering real world time-
series from different application domains like health-care,
machine maintenance etc. We have also illustrated our method
using signal processing and morphology aware feature set.
Experimental results depict selected features obtained from
proposed method outperforms benchmark unsupervised feature
selection methods, as well as, supervised feature selection
techniques.
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