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Centre de Vision Numérique, Gif-sur-Yvette, France

ABSTRACT
This paper addresses the problem of designing robust complex-
valued neural networks in order to reduce their sensitivity to
adversarial perturbations. The robustness is guaranteed by
imposing a bound on the Lipschitz constant of the network.
We present a new architecture (RCFF-Net), for which we
derive tight Lipschitz constant bounds. A constrained learn-
ing strategy is then developed to train the proposed structure,
while controlling its global Lipschitz constant. The proposed
approach is evaluated in an audio signal denoising task. The
achieved results demonstrate the effectiveness of the afore-
mentioned design method.

Index Terms— audio denoising, robustness, complex-
valued neural networks

1. INTRODUCTION

Despite growing popularity of deep neural networks (DNNs),
used in an ever-increasing number of fields (image classifi-
cation [1], speech enhancement [2], natural language pro-
cessing [3], etc.), the majority of the existing solutions op-
erate on real-valued inputs. Complex valued neural networks
(CVNNs) [4, 5, 6] have however been a topic of ongoing in-
terest in the data science community. Indeed, being able to
deal with complex-valued data is of high interest in the signal
processing domain. Even when analyzing real-valued signals
(e.g., audio or images), one of the most commonly used ap-
proaches is based on frequency analysis, which immediately
leads us to the complex plane. Magnitude and phase carry
different information types, which offer insight on the infor-
mation content of the signals [7]. Handling complex-valued
data may be difficult since it requires more computational
power, but it has also been shown that CVNNs may be more
expressive than classical neural networks [8]. For example,
[9] shows that an end-to-end complex-valued neural network
outperforms a 2-channel real-valued network in the context
of accelerated MRI reconstruction. In [10], CVNNs are em-
ployed for non-stationary RADAR data analysis. Also, it was
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shown that smaller CVNNs outperform larger real networks
when dealing with physical data [11].

Apart from developing high-performance systems, an-
other critical aspect to be considered nowadays is the safety
of AI-based systems. Recent results show that DNNs are sen-
sitive to adversarial perturbations of their inputs [12, 13]. A
known metric used to assess the robustness of a model is the
Lipschitz constant of the network. It provides a quantitative
stability measurement: the norm of the output perturbation
cannot be higher than the norm of the input perturbation mul-
tiplied by the Lipschitz constant [14]. However, due to the
complexity of neural network structures, computing the exact
Lipschitz constant is a non-deterministic polynomial-time
(NP-hard) problem. Several algorithms have been proposed
to approximate this constant in case of real-valued feed-
forward networks [15, 16, 17]. Extending these techniques to
CVNNs is however quite challenging.

In this work, we introduce a new class of neural networks
operating in the complex domain, called Robust Complex
Feed-forward Network (RCFF-Net). The structure of the net-
work is inspired by CapsNets [18, 19]. The weight matrices
process the real and imaginary part distinctly. The activation
functions handle the correlation between the real and imag-
inary parts of complex pairs. We demonstrate that, for the
proposed structure, the Lipschitz constant can be efficiently
computed. In addition, we develop a learning strategy to
control this constant and ensure the robustness of the network
against adversarial perturbations. We validate our approach
in the context of denoising audio signals corrupted with a
variable level of white Gaussian noise.

The rest of the paper is structured as follows. The theoret-
ical background of our work is presented in Section 2. Sec-
tion 3 describes our solution for designing robust complex-
valued neural networks, while in Section 4 the constrained
learning strategy is detailed. Experimental results are re-
ported in Section 5, and Section 6 gives concluding remarks.
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2. THEORETICAL ASPECTS

A complex-valued m-layer feedforward neural network is
mathematically defined as an operator T = Tm ◦ · · · ◦ T1,
where, for every i ∈ {1, . . . ,m}, Ti = Ri(Wi · +bi). At
layer i, Wi ∈ CNi×Ni−1 is the weight matrix, bi ∈ CNi the
bias vector, and Ri : CNi → CNi the activation function.
(Ni)06i6m are positive integers defining each layer width.

In the following, we will make the technical assumption
that the activation operators (Ri)16i6m satisfy some nonex-
pansiveness properties and that all of them (except possibly
for the last layer) are separable:

Assumption 2.1 Rm is a nonexpansive (i.e., 1-Lipschitz) op-
erator and, for every i ∈ {1, . . . ,m− 1}, Ri is separable, i.e.(
∀z = (ζk)16k6Ni ∈ CNi

)
Riz =

(
%i,k(ζk)

)
16k6Ni

,

(2.1)
where, for every k ∈ {1, . . . , Ni}, %i,k : C→ C.
In addition, for every i ∈ {1, . . . ,m−1} and k ∈ {1, . . . , Ni},
%i,k is αi-averaged where αi ∈]0, 1], that is

(∀(ζ, ζ ′) ∈ C2) |%i,k(ζ)− %i,k(ζ ′)|2+

+
1− αi
αi
|ζ − %i,k(ζ)− ζ ′ + %i,k(ζ ′)|2 6 |ζ − ζ ′|2.

(2.2)

Note that, when αi = 1 in (2.2), we recover the definition
of a nonexpansive function. More generally, nonexpansive
functions form a superset of αi-averaged functions. When
αi = 1/2, %i,k is a firmly nonexpansive function. It can be
shown that if αi > 1/2, then %i,k is αi-averaged if and only if
it is an overrelaxation of a firmly nonexpansive function [15].

There are two main recipes for building activation func-
tions satisfying (2.2). The first one is to use split-complex
activation functions of the form

(∀ζ ∈ C) %i,k(ζ) = %R
i,k(Reζ) + ı%I

i,k(Imζ), (2.3)

where %R
i,k : R→ R and %I

i,k : R→ R are αi-averaged activa-
tion functions. It is shown in [15] that most real-valued acti-
vation functions are averaged. The majority of them are prox-
imity operators of some proper lower-semicontinuous func-
tions and are thus firmly nonexpansive. An example of such
function within this class is the split-complex ReLU function:

(∀ζ ∈ C) %i,k(ζ) = ReLU(Reζ) + ıReLU(Imζ). (2.4)

The second recipe is based on the observation that (2.2) is
satisfied by many activation functions having the form

(∀ζ ∈ C) %i,k(ζ) = ω(|ζ|)ζ, (2.5)

with ω : R+ → R. Such activation functions operating
jointly on the real and imaginary parts of their input are thus
averaged. Examples of (2.5) are the Georgiou-Katsageras
activation function [20] and the squashing function used in
CapsNets [19], which are both proximity operators of convex
functions [21, Example 2.15] [15, Example 3.2(ii)].

3. ROBUSTNESS QUANTIFICATION IN THE
COMPLEX CASE

3.1. Lipschitz stability

Let x ∈ RN0 represent the input and T (x) ∈ RNm the asso-
ciated output of the neural model. If we add a small pertur-
bation z ∈ RN0 , the error on the output can be quantified as
follows:

‖T (x+ z)− T (x)‖ 6 θm‖z‖, (3.1)

where θm denotes the Lipschitz constant of the neural net-
work. It is worth noting that θm is a crucial parameter that
can be used as a feature to evaluate the robustness of the sys-
tem against possible adversarial attacks. To the best of our
knowledge, the problem of evaluating this bound in the case
of complex-valued neural networks has not been addressed
yet.

3.2. Deriving Lipschitz bounds in the complex domain

For every M ∈ N \ {0} and α ∈]0, 1], let us define the fol-
lowing set

BM
α = {Diag(λ1, . . . , λM ) | (∀i ∈ {1, . . . ,M})

λi ∈ C and |λi − 1 + α| = α}.

In the complex plane, each of the diagonal elements of a ma-
trix in BM

α lies on a circle with center 1−α and radius α. The
following result can then be proved where, for every complex
valued matrix (or vector) A, ‖A‖S is its spectral norm, and
|A| the matrix formed with the moduli of the elements of A.

Proposition 3.1 Suppose that Assumption 2.1 holds. Define

θm = sup
Λ1∈BN1

α1

...
Λm−1∈B

Nm−1
αm−1

‖WmΛm−1 · · ·Λ1W1‖S. (3.2)

Then θm is a Lipschitz constant of T . In addition,

‖Wm · · ·W1‖S 6 θm 6 ‖|Wm| · · · |W1|‖S. (3.3)

Note that matrices Λi = Diag
(
(λi,k)16k6Ni

)
∈ BNi

αi , with
i ∈ {1, . . . ,m − 1} are such that ‖Λi‖S 6 1. We can thus
deduce an upper bound for the Lipschitz constant, given by
the following inequality:

θm 6 ‖Wm‖S · · · ‖W1‖S. (3.4)

This upper bound corresponds to a classical, less accurate es-
timate of the Lipschitz constant of the network [16]. Although
these results extend those given in [15, Theorem 5.2], there
exists a fundamental difference between the complex-valued
case and the real one. For the Lipschitz bound established for
the real case in [15, Theorem 5.2], the supremum is calculated
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on a finite set of values. In contrast, the Lipschitz constant
(3.2) requires to compute it on an infinite set of parameters
since the sets (BNi

αi )16i6m−1 are not countable. However, we
will show next that it is possible to circumvent this difficulty
by focusing on a specific class of complex neural networks.

3.3. A special class of neural networks

We propose to build the weight operators of the network as
follows:

W1 = W+
1 Diag

(
eıβ1,1 , . . . , eıβ1,N0

)
(∀i ∈ {2, . . . ,m− 1}) Wi = eıβiW+

i

Wm = Diag
(
eıβm,1 , . . . , eıβm,Nm

)
W+
m , (3.5)

where

• for every i ∈ {1, . . . ,m}, W+
i ∈ [0,+∞[

Ni×Ni−1 ;

• (β1,k)16k6N0
∈ [0, 2π[N0 , (βm,k)16k6Nm ∈ [0, 2π[Nm

and for every i ∈ {2, . . . ,m}, βi ∈ [0, 2π[.

A simple expression of the Lipschitz constant of the network
is then deduced from Proposition 3.1.

Proposition 3.2 Suppose that the network is defined as above
and that Assumption 2.1 holds. Then

θm = ‖W+
m · · ·W+

1 ‖S. (3.6)

In other words, in this specific case, the Lipschitz constant
of the network reduces to the spectral norm of the product of
positive-valued weight matrices. This result suggests a new
neural network architecture which can be trained in a robust
way, as explained in the following sections. The proof of the
theoretical concepts presented above will be detailed in [22].

4. PROPOSED APPROACH

4.1. Robust CVNNs

We implement our architecture to meet the requirements of
Proposition 3.2 and design a Robust Complex Feed-Forward
Neural Network (RCFF-Net). The architecture is illustrated
in Figure 1. The network processes complex-valued data by
stacking their real and imaginary parts. The weights associ-
ated with the first and last layers, are Diagonal layers (DIAG),
as they perform phase shifts in the complex plane, which will
be optimized during the training phase. At the core of the ar-
chitecture stands the Complex Dense Layer (CDL), detailed
in Figure 1c. This layer encapsulates two nonnegative lin-
ear transforms that process distinctly the real and imaginary
parts. In contrast, the activation functions operate on each
pair of real-imaginary coefficients and they can be chosen as
explained in Section 2. The output is then obtained by con-
catenating the real and imaginary parts. Between CDL layers,
we apply a rotation operation (ROT), which induces a global
phase-shift of all its arguments.

4.2. Training strategy

For the training stage, we propose to employ a projected ver-
sion of the AdaMax optimizer [23]. More specifically, the
gradient step is followed by a projection onto a constraint set.
This set expresses the two constraints on which our approach
is grounded. First of all, since our assumptions are valid un-
der a nonnegativity condition for the weights, we need to en-
sure that (∀i ∈ {1, . . . ,m}), W+

i ∈ [0,+∞[Ni×Ni−1 . Ad-
ditionally, based on Proposition 3.2, to control the robustness
we impose that ‖W+

m . . .W+
1 ‖S 6 ϑ, where ϑ is the target

Lipschitz constant of the network. To do so, we implement a
block-coordinate algorithm where a convex problem is solved
at each step in the spirit of the approach proposed in [16].

5. APPLICATION TO AUDIO SIGNAL DENOISING

5.1. Experimental setup

The proposed methodology is applied to audio signal denois-
ing. We use a 5 layer RFCC-Net (m = 5), with diverse acti-
vation functions, trained on a publicly available dataset1 con-
sisting of musical exercises and songs, detailed in [17]. We
split the dataset into 3 distinct sets, as follows. The training
set contains 67 min, the validation set comprises 7 mins, and
5 mins of music signal were used as a test set. The noisy sig-
nals are generated by adding zero-mean white Gaussian noise
to the original samples. The noise standard-deviation is ran-
domly chosen so that the resulting signal-to-noise ratio varies
between 5 and 30 dB. A short-time Fourier transform (STFT)
is performed by segmenting the signals using an overlapping
(50%) Hanning sliding window. For each window, we com-
pute the 1024-points discrete Fourier transform. Because of
the Hermitian symmetry, we consider only the first 513 fre-
quency bins. Our network then estimates the complex STFT
coefficients and, in the post-processing phase, an inverse op-
eration (ISTFT) is performed for signal reconstruction.

5.2. Results and comparisons

We evaluate the performance of our RCFF-Net on 3 stan-
dard metrics: Peak Signal-to-Noise Ratio (PSNR), Cross-
correlation (CC), and Mean Squared Error (MSE), which
was also employed as the training loss. The results on the
test set are summarized in Table 1. We compare our solution
with other standard denoising techniques, namely optimal
Wiener filter and adaptive filter based on Normalised Least
Mean Squares (NLMS) algorithm. As another baseline, we
also trained a classical m = 5 layers Fully Connected Net-
work (FCN) with ReLU activation. Furthermore, we trained
RCFF-Net both using constrained and unconstrained weights,
referred in Table 1 as C and U, respectively. For the uncon-
strained model, since the weights may have arbitrary signs,
we only compute the upper bound θupp of the Lipschitz con-
stant, given by right hand side of (3.4). In the constrained

1https://speed.pub.ro/downloads/music-datasets/
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Fig. 1. Overview of the RCFF-Network. The red part denotes the real part, while the green accounts for the imaginary part. a) The proposed
architecture: 5 CDLs (1024, 512, 512, 1024 and 513 neurons, respectively) followed by a Rotation layer (ROT) or a Diagonal layer (DIAG).
b) The structure of a diagonal layer: the white band corresponds to the main diagonal which features non-zero coefficients. c) The structure
of the dense complex layer: each group of neurons (capsule) will process jointly the real part and the imaginary part of the coefficients.

Table 1. Experimental results for audio denoising
Unperturbed input Attacked input Deg.

MSE PSNR [dB] CC MSE PSNR [dB] CC [%]
Noisy Signal 7.21× 10−3 21.02 0.83 7.30× 10−3 21.00 0.83 0.09

Denoised Signal

Baseline – Wiener Filter 3.45× 10−3 24.24 0.94 – – – –
Baseline – NLMS Adaptive Filter 2.52× 10−3 25.61 0.95 – – – –

Baseline – Standard FCN 2.78× 10−3 26.05 0.95 5.46× 10−3 22.87 0.90 12.24

RCFF

ρ(ζ) = CReLU(ζ)
U θupp = 335 0.96× 10−3 30.00 0.99 4.84× 10−3 23.62 0.91 21.26
C θm = 0.99 2.02× 10−3 27.64 0.96 1.96× 10−3 25.43 0.95 7.99

ρ(ζ) = ζ
1+|ζ|

U θupp = 73.25 1.04× 10−3 29.45 0.97 5.42× 10−3 23.31 0.90 20.84
C θm = 0.99 2.11× 10−3 27.14 0.96 1.84× 10−3 25.72 0.95 5.23

ρ(ζ) = 8
3
√

3

|ζ|
1+|ζ|2 ζ

U θupp = 120 0.96× 10−3 30.19 0.98 5.26× 10−3 22.05 0.90 26.96
C θmθmθm= 0.93 1.22× 10−3 29.02 0.97 1.34× 10−3 28.68 0.97 1.17

ACNN [17] C θm = 1.00 1.98× 10−3 26.24 0.96 2.46× 10−3 25.43 0.95 3.08

case, we were able to train nonexpansive models (θm 6 1).
In accordance with the “no free lunch” theorem [24], this im-
proved stability comes at the expense of a loss of performance
that remains acceptable with our proposed method. We also
compared our results with a competing approach for training
robust denoisers [17] based on positive feed-forward neural
networks, which only estimates the magnitude of the STFT
coefficients. Moreover, to show that our solution is indeed
robust against adversarial perturbations, we have tested the
performance of our models when facing adversarial inputs,
in the cases when it was possible and relevant. To the best
of our knowledge, there are very few white-box attackers
suited for regression problems and none currently available
for complex-valued NNs. So, to create a worst-case input per-
turbation, we extended the gradient-based attacker proposed
in [25] to operate in the complex domain. The attacked input

was created by adding the aforementioned perturbation over
the clean audio sample. To emphasize the effectiveness of our
solution, the last column from Table 1 shows the degradation
level (in terms of percentage of SNR) when the model faces
adversarial inputs.

6. CONCLUSION
This paper proposes a novel solution for training robust
CVNNs. By judiciously structuring the weight matrices, we
derived a tight Lipschitz bound for the proposed architecture.
We also showed how to control this bound numerically while
training. We proved the effectiveness of our method in the
context of audio denoising, but our method could be extended
to other tasks such as source separation. In future works,
it would be interesting to apply RCFF-Net to a larger panel
of signal processing applications involving complex-valued
data.
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