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Abstract—Reinforcement learning (RL) is a powerful machine
learning technique to learn optimal actions in a control system
setup. An important drawback of RL algorithms is the need for
balancing exploitation vs exploration. Exploration corresponds
to taking randomized actions with the aim to learn from it and
make better decisions in the future. However, these exploratory
actions result in poor performance, and current RL algorithms
have a slow convergence as one can only learn from a single
action outcome per iteration. We propose a novel concept of
Inference-based RL that is applicable to a specific class of RL
problems, and that allows to eliminate the performance impact
caused by traditional exploration strategies, thereby making
RL performance more consistent and greatly improving the
convergence speed. The specific RL problem class is a problem
class in which the observation of the outcome of one action can
be used to infer the outcome of other actions, without the need
to actually perform them. We apply this novel concept to the use
case of dynamic resource allocation, and show that the proposed
algorithm outperforms existing RL algorithms, yielding a drastic
increase in both convergence speed and performance.

I. INTRODUCTION

Reinforcement learning (RL) is a popular machine learning
branch that is well established both in academia and industry.
Many relevant use cases have been tackled by RL in different
research areas, especially in signal processing systems and
communication system design [1]. To efficiently solve these
RL problems a vast amount of algorithms has been proposed in
literature [2], each having its own trade-off in terms of perfor-
mance, convergence speed and computational complexity. For
each problem class, it is important to select the RL algorithm
that is most suitable to solve it.

Exploitation and exploration are key mechanisms used in
RL algorithms. Exploitation refers to taking actions (in states)
that are expected to result in large rewards, whereas explo-
ration refers to taking randomized actions with the aim to
learn from it and make better decisions in the future. Striking
a good balance between exploitation and exploration is a
challenging research topic that is studied elaborately in RL
literature [2]. For time-varying environments it is important
to configure a high exploration level to be able to track the
environment. These exploratory actions often yield a poor
performance, which is unacceptable for many applications.
Examples of popular exploration strategies [2] are ϵ-greedy
action selection, upper-confidence-bound (UCB) based action
selection and a soft-max distribution action selection. For
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dynamic environments adaptive exploration strategies have
been proposed in [3].

This paper proposes another way to resolve the exploration-
exploitation dilemma, which can be applied to a particular
class of problems, in which the reward and next states of
alternative actions can be inferred based on the outcome of a
single action. It will be shown that dynamic resource allocation
(DRA) for communication systems falls under this proposed
class. DRA is important for communication services that have
stringent latency and bandwidth efficiency requirements. DRA
is employed in multiple recent communication technologies,
such as 5G wireless communication [4], the latest DSL tech-
nology G.fast [5], [6], as well as time-division-multiplexing
Passive Optical Network technologies [7].

The exploration-exploitation dilemma is tackled by a novel
concept we call “Inference-based Reinforcement Learning (I-
RL)”, which exploits the properties of the proposed problem
class to eliminate the need for explicit exploration. As a result
the convergence speed can be significantly improved, and the
performance penalties due to exploration can be avoided.

This paper is organized as follows. In Section II general
background is provided on RL algorithms with a concrete
explanation of the SARSA algorithm. In Section III the
problem class that can benefit from the Inference concept
is described. In Section IV the concept of Inference-based
Reinforcement Learning is proposed and elaborated for the
SARSA algorithm, also referred to as I-SARSA. In Section V,
I-SARSA is applied to DRA and compared to SARSA.

II. BACKGROUND ON REINFORCEMENT LEARNING

A Markov Decision Process (MDP) is the mathematical
framework that is generally used to model RL problems. An
MDP can be represented by a tuple (S,A, R, T ), in which S
denotes the state space, A denotes the action space, R denotes
the reward space, and T denotes the transition probability
function. In a finite MDP, the sets of states, actions, and
rewards have a finite number of elements. An RL problem
involves an agent and an environment. The agent observes the
current state S of the environment, takes an action A that
impacts the environment causing it to change its state to the
next state S′ and enables the observation of a reward R(S,A).
From multiple iterations of sequences S,A,R, S′ the goal of
the RL algorithm within the agent is to derive a policy (i.e.,
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a state-to-action mapping) that at each time step k maximizes
the expected discounted reward of the environment:

∞∑
k′=0

γk′
Rk+k′+1, (1)

where γ is the discount factor, 0 ≤ γ ≤ 1 [2].
As an illustration of a reinforcement learning algorithm,

the popular state-action-reward-state-action (SARSA) algo-
rithm [2] is considered. SARSA will be further extended in
Section IV to an I-RL algorithm. Without loss of generality,
we focus on a tabular SARSA implementation, as shown in
Algorithm 1, from [2], for a setting in which no episodes are
used and in which the state and action spaces are discrete.
The action-value function Q(S,A) corresponds to a table
with the rows corresponding to all possible states and the
columns corresponding to all possible actions. Each entry of
the table stores the expected (discounted) return for performing
the corresponding action A in the corresponding state S, as
learned up to that moment by the RL algorithm. Based on the
action-value function the best action A′ for a given state S′

can be determined as

A′ = argmax
a

Q(S′, a). (2)

Algorithm 1 SARSA algorithm
1: Parameters: step size α ∈ (0, 1], γ ∈ [0, 1], small ϵ > 0
2: Initialize Q(s, a) for all s ∈ S, a ∈ A arbitrarily
3: Initialize S and A
4: while S is not terminal do
5: Take action A
6: Observe reward R(S,A) and next state S′(S,A)
7: Choose next action A′ for next state S′(S,A) with an

exploitation-exploration trade-off (e.g., ϵ-greedy)
8: Q(S,A)← Q(S,A)+α [R(S,A) + γQ(S′, A′)−Q(S,A)]
9: S ← S′, A← A′

10: end while

SARSA starts with an initialization of the algorithm pa-
rameters, the action-value table Q(s, a), the state and action
spaces, the state S and the action A. Parameter α is the step
size for the gradient-like update formula of the action-state
function. Parameter γ is the discount factor that determines the
importance of future rewards. Parameter ϵ determines the level
of exploration. The main loop starts by taking an action in the
current state on line 5 and observing the reward and next state
of the environment on line 6. For the next state S′, the next
action A′ is chosen using an exploitation-exploration trade-off
depending on parameter ϵ on line 7. A popular approach is
the so-called ϵ-greedy selection, where the best next action A’
(according to formula (2)) is taken with probability 1− ϵ, and
a random next action is taken with probability ϵ. On line 8
the action-value function Q(S,A) is updated for state S and
action A. Finally on line 9 the state and action are updated to
the next state and next action, respectively.

III. PROBLEM CLASS SUITABLE FOR INFERENCE-BASED
REINFORCEMENT LEARNING

Problems considered by RL can have different character-
istics ranging from stationary to non-stationary, and from
deterministic to stochastic. I-RL is applicable to a specific
class of RL problems, that is characterized by the fact that once
the outcome (e.g., the reward R(S,A), the next state S′(S,A),
or internal environment variables θ⃗) of a single action A in a
state S is known, one can infer the rewards and next states
of alternative actions without actually executing them. This
RL problem class will be referred to as the Inference-capable
problem class. Formally, it can be defined as

∃a ∈ A \A : ∃f, g :R(S, a) = f(R(S,A), S′(S,A), θ⃗),

S′(S, a) = g(R(S,A), S′(S,A), θ⃗),
(3)

where f and g are known functions (or mappings) that allow
to infer the reward and next states, respectively, for alterna-
tive actions based on the observation of a single outcome
R(S,A), S′(S,A), θ⃗. The alternative actions a can refer to all
other actions or a subset of actions, the latter corresponding
to a setting in which the functions f, g are only known for a
subset of actions. For some RL algorithms (e.g., contextual
bandit algorithms with discount factor γ = 0), only the
function f needs to exist, as next states are not used in these
algorithms.

The Inference-capable problem class (3) covers multiple use
cases in different areas, but we will only elaborate it for the
DRA use case in Section V.

IV. INFERENCE-BASED REINFORCEMENT LEARNING

Inference-based reinforcement learning is a novel concept
for RL that exploits the property of the Inference-capable
problem class (3). The main idea is that during a single
iteration the outcome (reward and next state) of an action A
performed in a state S is used to infer (or estimate) the rewards
and next states of alternative actions a ∈ A\A, which are then
used to update the action-value function Q(S, a). Existing RL
algorithms only update the action-value function for a single
state S and action A pair per iteration. This is visualized in
Figure 1, for the case where the set of alternative actions a
covers all other actions in the action space A.

This concept is now elaborated for the SARSA algorithm
as an example, but it can similarly be applied to alternative
algorithms, such as Q-learning, contextual bandit algorithms,
etc. The extension of the SARSA algorithm to the Inference-
based SARSA algorithm (I-SARSA) is shown in Algorithm 2.
The initialization steps (lines 1-6) are similar to those of the
SARSA algorithm, with the difference that there is no need
for the ϵ parameter related to exploration. The difference with
SARSA is on line 7, where the rewards R(S, a) for all (or a
subset of all) actions a ∈ A\A are inferred exploiting property
(3). On line 8 the same is done for the next states. On line 9 the
next actions A′(S′(S, a)) are computed for all possible actions
a ∈ A in case they would have been selected in the previous
iteration. The information obtained in lines 7, 8 and 9 is used
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Fig. 1. Action An is performed in state Sm. Inference-based reinforcement
learning infers the rewards R(Sm, ·) and next states S′(Sm, ·) of multiple
alternative actions A1, . . . , A|A| for state Sm based on the outcome of one
single action An during that iteration. This information is used to update the
action-state function Q(S,A) for all entries Q(Sm, ·), as opposed to existing
tabular RL algorithms that only update a single entry Q(Sm, An).

in line 10 to update the action-value function for all possible
actions a ∈ A in state S, as opposed to only updating the
action-value function for a single action A as SARSA does.
Finally on line 11 the state is updated to the next state S′(S,A)
and the next action is updated to A′(S′(S,A)).

The selection of the next action on lines 9 and 11 does not
consider any explicit exploration. There is a 100% implicit
exploration in the sense that the impact of all actions (for a
given state) is continuously inferred, but this does not require
actual execution of these actions. As such, there is no perfor-
mance penalty due to explicit exploration, i.e., no randomized
actions with poor performance. This is a desirable property
for problems where the performance penalty of randomized
actions is unacceptable, or for problems considering time-
varying environments for which high exploration is necessary
to continuously track changes in the environment.

Algorithm 2 Inference-based SARSA algorithm (I-SARSA)
1: Parameters: step size α ∈ (0, 1], γ ∈ [0, 1]
2: Initialize Q(s, a) for all s ∈ S, a ∈ A arbitrarily
3: Initialize S, choose A = argmaxa Q(S, a)
4: while S is not terminal do
5: Take action A
6: Observe reward R(S,A) and next state S′(S,A)
7: Infer rewards for other actions: ∀a ∈ A\A : R(S, a)
8: Infer next states for other actions: ∀a ∈ A\A : S′(S, a)
9: Compute next actions for all next states as:

∀a ∈ A : A′(S′(S, a)) = argmaxã Q(S′(S, a), ã)
10: ∀ã ∈ A : Q(S, ã)←

Q(S, ã)+α [R(S, ã) + γQ(S′(S, ã), A′(S′(S, ã)))−Q(S, ã)]

11: S ← S′(S,A), A← A′(S′(S,A))

12: end while

A rigorous analysis of the convergence speed up of I-
SARSA is outside the scope of this paper. The regret is
often used as a convergence measure, and corresponds to

the expected decrease in reward gained due to executing the
learning algorithm instead of the optimal actions from the
beginning. In [8], it is proven that Q-learning with UCB
exploration achieves a regret O(

√
H3 |A| |S|T ), where H

denotes the number of steps per episode, |A| the number of
actions, |S| the number of states and T the total number of
steps. So there is a square root dependence on the action space
size |A|. Tabular Q-learning algorithms update the action-value
table for a single entry (i.e., state and action combination)
per iteration. The proposed I-SARSA algorithm updates the
action-value table for all actions of state S per iteration, which
increases the number of updates per iteration by a factor equal
to the number of states |A|. We conjecture that applying the
Inference concept improves the convergence proportional to
the factor

√
|A|. In Section V the convergence speed up of

SARSA and I-SARSA will be numerically evaluated for the
concrete use case of dynamic resource allocation.

V. DYNAMIC RESOURCE ALLOCATION BY
INFERENCE-BASED REINFORCEMENT LEARNING

Fig. 2. DRA system model

As shown in Figure 2, we consider a DRA system model
consisting of a single (time-slotted) traffic queue or buffer, as
follows:

Qk+1 = max (0, Qk − Ek + Ik) , (4)

where Qk and Qk+1 denote the queue fill at the start and end
of time interval k, respectively, Ik denotes the ingress rate
during time interval k, and Ek denotes the egress rate during
time interval k. The egress rate is bounded by the allocated
resources Ck, under control of the DRA controller, as follows

Ek = min(Qk + Ik, Ck).

To map DRA to an Inference-based RL problem, we con-
sider the system parameters available at the beginning of
time interval k, such as the ingress rates during the past 4
time intervals Ik−4, Ik−3, Ik−2, Ik−1. The goal is to optimize
the resources Ck allocated during time interval k so as to
maximize the expected discounted reward (1), where the
reward is defined as a weighted trade-off between the queue fill
(resulting in queuing latency) and the bandwidth inefficiency:

R(S,A) = −max (0, Qk − Ek + Ik)− βmax (0, Ck − Ek) ,

where β allows to trade-off the first term relating to latency,
and the second term relating to bandwidth inefficiency.

1623



To avoid a very large state space and thus action-state
table, we encode the states and actions. Note that for prac-
tical implementations on state-of-the-art telecommunications
products, it is crucial to target a very low complex solution
with small memory footprint. We discretize the ingress rate
of the last time interval Ik−1 uniformly between 0 and a
maximum value considered for the ingress rate IM , with
DS discretization levels. The discretized ingress rate will be
referred to as IDk−1. In addition, the trend of the ingress rate
over the four last intervals Ik−4, Ik−3, Ik−2, Ik−1, is captured
by a normalized correlation with linearly increasing values
α = [0.4, 0.8, 1.2, 1.6], as follows:

cnormk =

∑4
i=1 αiIk−i∑4
i=1 Ik−i

.

This normalized correlation value cnormk is encoded with three
values, as follows,

cenc =


0 if cnormk < 0.95,

1 if 0.95 ≤ cnormk < 1.05,

2 if 1.05 ≤ cnormk .

This three-value parameter is also added to the state space
encoding, resulting in a total number of states equal to 3×DS .

The action corresponds to the bound on the egress rate,
i.e., Ck, which is also discretized between 0 and IM , with a
number of levels DA, denoted by CD

k . The action, state and
reward function for time interval k can be mapped as follows:

A = CD
k ,

S = IDk−1 + cencDS ,
R(S,A) = −Qk+1 − βmax

(
0, CD

k − ED
k

)
,

with ED
k = min(Qk + Ik, C

D
k ). The reward observed at the

end of time interval k is defined by the trade-off between the
queue fill and the unused bandwidth. The number of actions
equals DA, the number of states equals 3×DS , and the action-
state table has 3×DS rows, and DA columns.

One time slot [k − 1, k[ corresponds to one iteration of the
RL algorithm. The queue fill information Qk, Qk+1 and the
ingress rate Ik are consulted at the end of time interval k.
Knowing Qk and Ik, the inference property (3) holds. More
specifically, the reward for other actions C than that of the
performed action CD

k , can be derived based on the measures
Ik, Qk as follows,

∀C ∈ A \ CD
k : R(S,C) =

−max(0, Qk + Ik − ED
k (C))− βmax

(
0, C − ED

k (C)
)
,

where the set of actions A corresponds to all possible values
of CD

k , and with ED
k (C) = min(Qk + Ik, C). With these

definitions, the I-SARSA algorithm can be applied to minimize
the queuing latency and bandwidth inefficiency.

VI. SIMULATIONS

To compare the performance of SARSA and I-SARSA for
DRA, we consider two traffic patterns: a noisy sine time

function (as a toy example), and a real large file download
TCP traffic trace captured with a state-of-the-art DSL modem.

The parameter settings for SARSA and I-SARSA are α =
0.05, γ = 0.8 and β = 0.4. These values are specifically opti-
mized for SARSA to have best performance for the considered
traffic patterns. Further, ϵbase = 0.3 is considered for SARSA.
An action-state table with 33 states (3 × DS = 3 × 11) and
11 actions (DA = 11) is considered. The action-state table is
initialized with zeros. We implemented a minor modification
in SARSA that decreases the value of ϵ after 1000 iterations
according to

ϵ =
ϵbase

max(1, 0.001 ∗ iteration)
.

The value of ϵ is reduced to 0.03 after 10000 iterations. We
have verified that this gives a better steady-state performance
and convergence speed for SARSA compared to a fixed value
for ϵ. For I-SARSA, no explicit exploration is needed.

Figure 3 shows the evolution of the cost function (i.e., minus
averaged reward) over time of SARSA and I-SARSA for the
noisy sine traffic pattern. I-SARSA converges to an optimized
action-state table in less than 50 iterations, whereas it takes
more than 800 iterations for SARSA. Also the performance
(after 2000 iterations) of I-SARSA is better than that of
SARSA, i.e., 3 [Mbit] versus 50 [Mbit], respectively. The same
observation can be made for the fast changing TCP traffic
trace. The performance is shown in Figure 4 for a period of 5
seconds (90 s to 95 s) during operation, but it is characteristic
for the entire trace. The average performance is 3 times better
for I-SARSA than for SARSA.

Figure 5 shows the allocated data rates for SARSA and
I-SARSA, for the noisy sine traffic pattern, after only 280
iterations. It shows that I-SARSA succeeds in learning the
sine traffic pattern whereas SARSA does not. I-SARSA is
very suitable for DRA use cases where traffic patterns can
be expected to change quickly.

Finally, Figure 6 shows the Pareto-optimal performance
curves for SARSA and I-SARSA, for the noisy sine and
TCP traffic patterns. These are the average performances for
a varying parameter value β trading-off queuing latency and
bandwidth allocation efficiency. The x-axis plots the average
queue fill, whereas the y-axis plots the average BW allocation.
Ideally you want the smallest possible bandwidth allocation
(max. efficiency), while also having the smallest possible
queue fill (min. latency), which corresponds to the bottom-
left location on the figure. The I-SARSA algorithm clearly
outperforms the SARSA algorithm. The Pareto curve of the
SARSA algorithm is moreover not consistent. For a changing
parameter value β the Pareto curve does not have a convex
shape. This is because the learning of the SARSA algorithm is
less consistent than that of the I-SARSA algorithm. We have
tested different values for parameters α, γ, ϵ but this does not
improve the performance of SARSA, whereas we see that I-
SARSA always performs very robustly.

Simulation results for other traffic traces (e.g., Speed test,
Video call, IoT, File download, . . . ) show similar benefits for
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I-SARSA, but are omitted due to space limitation. I-SARSA
has also been compared to commonly considered methods
for tackling DRA or traffic prediction problems (ARIMA,
exponential averaging, and deep learning solutions). These
results indicate that I-SARSA is a very suitable technique for
DRA with an improved performance-complexity trade-off, but
this content is omitted due to space limitation.

Fig. 3. Avg cost evolution for noisy sine

Fig. 4. Avg cost evolution for TCP

VII. CONCLUSION

We have proposed a novel concept of Inference-based Rein-
forcement Learning (I-RL) that can be applied to a specific RL
problem class that allows to leverage the outcome of a single
action to infer the outcome of other actions (that were not
performed). This problem class property is exploited to obtain
RL algorithms that do not need explicit exploration, which
allows to significantly increase the convergence speed, to im-
prove the steady state and transient performance, and to make
the operation more consistent and robust. The proposed I-
SARSA algorithm has been applied to the problem of dynamic
resource allocation, showing large performance improvements
compared to existing RL algorithms. We believe that I-RL

Fig. 5. Learned bandwidth allocations for noisy sine

Fig. 6. Pareto trade-offs for noisy sine and TCP traffic patterns

algorithms are especially interesting for very dynamic RL
environments, and that the proposed concept is valuable for
other signal processing related usecases.
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