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Abstract—Optimal symbol detection in multiple-input
multiple-output (MIMO) systems is known to be an NP-hard
problem. Recently, there has been a growing interest to get
reasonably close to the optimal solution using neural networks
while keeping the computational complexity in check. However,
existing work based on deep learning shows that it is difficult
to design a generic network that works well for a variety of
channels. In this work, we propose a method that tries to strike
a balance between symbol error rate (SER) performance and
generality of channels. Our method is based on hypernetworks
that generate the parameters of a neural network-based detector
that works well on a specific channel. We propose a general
framework by regularizing the training of the hypernetwork
with some pre-trained instances of the channel-specific method.
Through numerical experiments, we show that our proposed
method yields high performance for a set of prespecified channel
realizations while generalizing well to all channels drawn from
a specific distribution.

Index Terms—MIMO detection, deep learning, hypernetwork

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems are an es-
sential part of modern communications [1], [2]. Moreover, they
are expected to play a fundamental role in moving from the
fifth to the sixth generation of cellular communications by
achieving high data rates and spectral efficiency [3]. In MIMO
systems, base stations are equipped with multiple antennas,
enabling them to handle several users simultaneously. How-
ever, these systems entail many challenges such as performing
efficient symbol detection, which is the focus of our paper.

Exact MIMO detection is an NP-hard problem [4]. Given a
modulation of M symbols and Nu, the exact maximum likeli-
hood (ML) estimator has an exponential complexity O(MNu).
Thus, obtaining this ML estimate is computationally infeasible
and becomes intractable even for moderately-sized systems.
Several approximate solutions for symbol detection have been
proposed in the classical literature including zero forcing (ZF)
and minimum mean squared error (MMSE) [5]. Although both
(linear) detectors have low complexity and achieve a good
performance for small systems, their performance degrades
severely for larger systems [6]. Another classical detector is
approximate message passing (AMP), which is asymptotically
optimal for large MIMO systems with Gaussian channels,
but degrades significantly for other (more pratical) channel
distributions [7].

Recently, machine learning and, in particular, deep learning
have been proposed to solve fundamental problems in wire-
less communications such as power allocation [8]–[10], link
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scheduling [11], [12], and random access control [13]. For the
particular case of MIMO symbol detection, several solutions
have been derived [14]–[17]. At a high level, one can catego-
rize the existing methods into two classes: 1) channel-specific
methods learn to perform symbol detection for a prespecified
channel realization, and 2) channel-agnostic methods can per-
form symbol detection for a wide variety of channels, typically
drawn from a distribution of interest. MMNet [14] and the
so-called fixed channel version of DetNet [15] are examples
of channel-specific methods whereas HyperMIMO [16], RE-
MIMO [17], and the varying channel version of DetNet [15]
are examples of channel-agnostic methods. Naturally, the first
class attains very high performance for the channels in which
they were trained but fail in other channels from the same
distribution. However, as they have to be trained for each
channel realization, they are typically unsuitable for real-
time applications. In contrast, the second class generalizes
well across a distribution without the need of retraining but
cannot match the performance of the first class on the specific
channels where they were trained.

Our goal is to combine these two classes of methods
to attain a solution that yields very high performance for
a set of prespecified channels (and their perturbations) and
generalizes well to all channels coming from a distribution of
interest without the need to retrain. We achieve this by first
constructing a channel-agnostic methods based on a channel-
specific one using the concept of hypernetworks [18], and then
regularizing the training of the hypernetwork with several pre-
trained instances of the channel-specific method. Although the
framework proposed is generic in terms of which channel-
specific detector to choose, we focus on MMNet [14] and its
corresponding hypernetwork extension, the HyperMIMO [16].
Contribution. The contributions of this paper are twofold:
1) We propose a learning-based solution for MIMO detection
that yields high accuracy for perturbations of a prespecified
set of channels while generalizing to a whole distribution. We
attain this via a HyperMIMO architecture whose training is
regularized by solutions of the MMNet.
2) Through numerical experiments, we demonstrate that the
proposed solution achieves symbol error rates below those
obtained by HyperMIMO and MMNet trained separately while
maintaining the (forward-pass) computational complexity of
HyperMIMO.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a communication channel with Nu single-
antenna transmitters or users and a receiving base station with

1626ISBN: 978-1-6654-6798-8 EUSIPCO 2022



Nr antennas. The forward model for this MIMO system is
given by

y = Hx+ n, (1)

where H ∈ CNr×Nu is the channel matrix, n ∼
CN (0, σ2INr ) is a vector of complex circular Gaussian noise,
x ∈ XNu is the vector of transmitted symbols, X is a finite set
of constellation points, and y ∈ CNr is the received vector. In
this work, a quadrature amplitude modulation (QAM) is used
and each symbol is normalized to unit average power. It is
assumed that the constellation is the same for all transmitters
and each symbol has the same probability of being chosen
by the users Nu. Moreover, perfect channel state information
(CSI) is assumed, which means that H and σ2 are known at
the receiver.1 Under this setting, the MIMO detection problem
can be defined as follows.

Problem 1: Given perfect CSI and an observed y follow-
ing (1), find an estimate of x.

Given the stochastic nature of n in (1), a natural way of
solving Problem 1 is to search for the x that maximizes the
probability of observing our given y. Unfortunately, such an
ML detector boils down to solving the optimization problem

x̂ML = argmin
x∈XNu

||y −Hx||22, (2)

which is NP-hard due to the finite constellation constraint
x ∈ XNu [4], rendering x̂ML intractable in practical appli-
cations. Consequently, several schemes have been proposed in
the last decades to provide efficient approximate solutions to
Problem 1, as mentioned in Section I.

The classical body of work (ZF, MMSE, AMP) focuses on
solving a single instance of Problem 1 for arbitrary y and
H, which must then be repeated to recompute the detection in
successive communication instances. Given that in practice we
are interested in solving several instances of Problem 1 across
time, a learning-based body of work has gained traction in
the past years [14]–[17]. In a nutshell, based on many tuples
(y,H,x), the idea is to learn a map – a function approximator
– from the space of observations and CSI to the corresponding
(approximate) transmitted symbols x. In this way, when a
new observation y is received (along with the CSI), x can be
efficiently estimated using the learned map without the need
for solving an optimization problem.

Having introduced this framework, we can provide a precise
distinction between the families of learning-based methods
that we denominated as channel-specific and channel-agnostic.
Channel-specific methods like DetNet [15] (for the fixed
channel case) and MMNet [14] learn a different function for
every H, i.e., they learn a function ΦH : CNr → XNu

such that ΦH(y) is a good solution to Problem 1 for a
specific H of interest. On the other hand, channel-agnostic
methods like HyperMIMO [16] and RE-MIMO [17] consider
the CSI as input to their learnable functions, i.e., they look
for Φ : CNr × CNr×Nu → XNu such that Φ(y,H) is a
good solution to Problem 1. Naturally, such a satisfactory

1To avoid notation overload, we adopt the convention that whenever we
assume H to be known, σ2 is also known.
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Fig. 1: Our proposed solution seeks to combine the best of
both classes of methods by specializing to a channel (or set
of channels) of interest while generalizing to a whole channel
distribution.

Φ cannot be found for completely arbitrary H and, rather,
channel-agnostic methods focus on channels drawn from some
distribution of interest. Moreover, due to the specialized nature
of ΦH, channel-specific models tend to perform better for the
particular channel H but their performance quickly degrades
when a different channel is drawn.

In this setting, we are motivated by the following question:
Can we develop a generalizable channel-agnostic method
that achieves performance comparable with channel-specific
methods for a channel H (or set of channels H) of interest?
In essence, we want to keep the best of both classes of methods
by performing close to optimal on prespecified channels while
generalizing to a whole distribution. Our motivating question
is relevant in practice when, e.g., the channel fading varies
smoothly with time as in Jakes model [19] (see Section IV for
more details). In such a case, we want our learning scheme
to perform especially well around the current channel while
generalizing satisfactorily to avoid the need for immediate
retraining.

At a high level, given some metric in the space of channels,
channel-specific solutions yield lower symbol error rate (SER)
close to the channel H0 for which they were trained whereas
channel-agnostic methods work better when channels further
away from H0 are drawn; see Fig. 1. Intuitively, we want to
derive a method that attains the behavior illustrated in green
in Fig. 1. Hence, one can think of our sought solution as a
robust version of a channel-specific method that gracefully
degrades into a channel-agnostic method. Alternatively, one
can see the envisioned solution as a channel-agnostic method
that has been specially tuned to overperform on a subset of
channels of interest. Either way, we propose to achieve this
through the use of hypernetworks whose training is regularized
by the solutions of channel-specific methods, as we detail next.

III. HYPERNETWORKS WITH LEARNED REGULARIZERS

In Section III-A we introduce the notion of a hypernetwork
and its use in machine learning whereas in Section III-B we
detail how we incorporate hypernetworks in our solution to
Problem 1.
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Fig. 2: The general scheme of a hypernetwork. The hypernet-
work g(·;Θ) takes the input Z and generates the weights W,
which are fed into the main network. Then, the main network
Φ(·;W) takes as input A and returns the output B.

A. Hypernetworks in machine learning and MIMO detection

Hypernetworks are neural networks that have as output the
weights of another target (or main) neural network, which
performs the learning task [18]; see Fig. 2. More precisely, the
interpretation of our main network is that of a classical neural
network that learns a parametric function Φ(·;W) : A → B
from input data A to some desired target B, being W ∈ W
the learnable parameters of this neural network. The goal of
the hypernetwork, on the other hand, is to learn a parametric
function g(·;Θ) : Z → W from the (possibly different)
input Z into the space of parameters W of the main network.
In this way, we are not fixing the parameters W of our
main network but rather making these a function of the
input Z, effectively improving the generalizability of Φ. Thus,
given inputs (A,Z), the output of the main network is given
by Φ(A; g(Z;Θ)) ∈ B. It should be noted that only the
parameters Θ of the hypernetwork need to be learned during
training.

The notion of a hypernetwork has been used in several
contexts such as object recognition [20] and generation of 3-
D point clouds [21]. For example, hypernetworks have been
used for 3D shape reconstruction [22] and to learn shared
representations of images [23]. In the specific context of
MIMO detection, the use of hypernetworks has been already
proposed in [16] applied to the MMNet. As the MMNet
depends on a particular channel realization, the hypernetwork
enables the generalization to a whole distribution of channels.

B. Learning hypernetwork regularizers

Having formally introduced the concept of a hypernetwork,
we can now revisit the HyperMIMO [16], which exactly
follows the framework in Fig. 2. In particular, we have that
the main network – which takes the form of an MMNet [14] –
has as input the observation y and the CSI, i.e., A = {y,H}.
Moreover, the hypernetwork takes the CSI as input Z = H
and generates the weights for the multiple layers of the main
MMNet. Then, the MMNet generates the estimate of the trans-
mitted symbols (B = x̂). The weights of the hypernetwork
are trained to minimize a loss that compares x̂ with the true
transmitted symbols x. This flow is depicted by blue arrows
in Fig. 3.

We expand the described training procedure to attain a
solution to Problem 1 that captures the desirable behavior
in Fig. 1. First, we determine the channel or set of channels
H = {H1,H2, · · · ,HN} on which we want our solution to
achieve especially high detection performance. This choice
will be guided by the nature of the system where we anticipate

MMNet(H1;W
M
1 )

MMNet(H2;W
M
2 )

MMNet(HN ;WM
N )

H

x̂

W

y

x
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H2
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Pre
Train
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Train

Pre
Train

LossA(Θ)

LossB(Θ)

Hypernetwork

Main MMNet

Fig. 3: Scheme of our proposed training architecture. In
addition to the more classical hypernetwork training (blue
arrows), we propose a regularization term that depends on
several pretrained main (MMNet) networks, as depicted by
the red arrows.

that our detector will be deployed. Given many realizations
(y,Hi,x) for the channels Hi ∈ H, we train a collection of
MMNets ΦHi(·;WM

i ), one per channel Hi. Notice that, given
the channel-specific nature of ΦHi

, the learned weights WM
i

entail good detection performance for the channel Hi. We use
these pretrained weights as regularizers during the training
of our hypernetwork; see red arrows in Fig. 3. To be more
precise, if we denote by WH

i = g(Hi;Θ) the weights output
by the hypernetwork when we input channel Hi, we define
our regularized loss as

L(Θ) = EH,x,n[||x− x̂||22]︸ ︷︷ ︸
LossA(Θ)

+β
∑

Hi∈H

||WM
i −WH

i ||1︸ ︷︷ ︸
LossB(Θ)

. (3)

The first term in (3) computes a classical mean square error
between the true symbols and the estimated symbols, where
the expected value is taken over the channel, input, and noise
distributions of interest. The channel distribution used here is
the one for which we want our channel-agnostic method to
generalize. The second term penalizes the distance between
the parameters in the pretrained MMNets and those generated
by the hypernetwork when it is fed with channels from H. We
measure this discrepancy using an ℓ1 norm to promote a sparse
difference between WM

i and WH
i . This means that the weights

WH
i generated by the hypernetwork tend to coincide with

WM
i for a subset of the entries. The relative weight β captures

the importance of performing well within the set H. Indeed,
when β = 0 our proposed method boils down to HyperMIMO
and completely ignores the prespecified channels H. On the
other hand, for β → ∞ (and assuming that the hypernetwork is
sufficiently expressive) our method should mimic the behavior
of MMNet on H but quickly degrade for generic channels.
By selecting an intermediate value of β, we can realize the
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desired behavior in Fig. 1, as we demonstrate in Section IV.
The model is trained by minimizing the loss in (3) with respect
to the hypernetworks parameters Θ through stochastic gradient
descent.

Before presenting the numerical experiments, two remarks
are in order. First, although for concreteness we present our
scheme in Fig. 3 for the case where the main network is an
MMNet, the same framework can be applied for any generic
channel-specific method taking the role of our main network.
Second, although our proposed scheme incurs an additional
training load in comparison with a vanilla hypernetwork,
once trained their computational complexities for detection are
exactly the same. We will refer to our proposed methodology
particularized for the MMNet as HyperMIMO with learned
regularizers, or HyperMIMO-LR for short.

IV. NUMERICAL EXPERIMENTS

In this section we present the results of our proposed
method2. We start by presenting the channel model, simu-
lation setup, and neural network training process. Then, we
present the experimental results and derive insights into the
performance of the HyperMIMO-LR.

A. Channel model
The channel model is generated following the Jakes model

[19]. We express the small-scale Rayleigh fading component
as a first-order complex Gauss-Markov process

Ht = ρHt−1 +
√
1− ρ2Et, (4)

where Et is = {et,i}Nu
i=1 ∼ CN (0, INr

) and {E0,E1, · · ·}
are independent and identically distributed random variables.
The initial matrix H0 is generated following the Kronecker
correlated channel model

H0 = R1/2
r HeR

1/2
u , (5)

where each column of He is {hi,e}Nu
i=1 ∼ CN (0, INr

) and Rr

and Ru are the spatial correlation matrices at the receiver and
transmitter, respectively, generated according to the exponen-
tial correlation matrix model with a correlation coefficient ρk
[24]. In our model, the signal-to-noise ratio (SNR) is given by

SNR =
E[||Hx||2]
E[||n||2]

=
Nu

σ2Nr
. (6)

For the experiments, SNRs between 5dB and 10dB are con-
sidered.

B. Implementation
Our simulation environment includes a base station with

Nr = 4 receiver antennas and Nu = 2 transmitting single-
antenna users. We consider 4-QAM modulation. The architec-
ture of the hypernetwork is composed of three dense layers:
the first layer has the same number of units as the input, the
second one has 100 units and the third one has the number of
units matching the number of parameter that MMNet requires.
For the MMNet, we use 6 layers. The activation function for

2Code to replicate the numerical experiments can be found at https://github.
com/nzilberstein/HyperMIMO LR.git.

all layers in the hypernetwork is an ELU function; the reason
why using an ELU and not a ReLU resides on the nature of
the Θ parameters, which can take negative values.
Training. We use a batch size of 100 channel matrices
generated from (5). The training is performed using ADAM
optimizer [25] with a reduce plateau scheduler: we compute
the loss every 500 iterations and when the loss stopped
improving, the learning rate is reduced by a factor of 0.9.
We train for 50,000 iterations3. The value of β in (3) was set
to 1. For the regularizer, we generate 140 different sequences
of length t = 4 following (4) with ρ = 0.98 and starting
from the same initial matrix H0 from (5) with ρk = 0.6. In
total, we use N = 561 pre-trained MMNets. The matrices are
chosen randomly, although we tried a few heuristics to select
representative samples. However, none of them consistently
outperformed the random choise.

C. Simulation results

For testing the performance of the detectors, we generate a
test set of 100 sequences of the same length t = 4 from the
same model in (4), also starting from H0.

We compare the SER achieved by HyperMIMO-LR with
respect to the following methods: HyperMIMO, MMNet,
DetNet with fixed and varying channel, MMSE and ML (using
the Gurobi solver [26]). The comparisons are shown in Fig. 4a.
The figure reveals that the performance of HyperMIMO-LR
is closest to the optimal ML, and outperforms all the other
methods, in particular both HyperMIMO and MMNet. It is
particularly interesting to observe that while HyperMIMO-LR
consistently outperforms the classical MMSE detector, Hyper-
MIMO has a worse performance than MMSE. This is because
the performance of the HyperMIMO decreases significantly
when it is tested in perturbed versions of a channel from the
distribution, while HyperMIMO-LR performs robustly in those
unseen channels.

The performance of the detector as a function of the hops
t is represented in Figs. 4b and 4c, for an SNR of 5dB and
10dB, respectively. We use the same test set as in the previous
experiment, and for each time t we average the performance
of the proposed detector over the 100 sample channels. In
both cases, we observe equal SERs at t = 0 (initial matrix
H0) for both MMNet and HyperMIMO-LR. This is expected
because the parameters of both architectures are similar due to
the regularizer, and hence the performance of both has to be
the same at the initial hop. We also see that the performance of
DetNet-FC at the initial hop is close to HyperMIMO-LR and
MMNet, but the performance for both MMNet and DetNet-
FC quickly degrades as we increase t. Moreover, HyperMIMO
follows a similar trend as HyperMIMO-LR, meaning that its
performance does not drop severely with t but nonetheless
it is inferior to HyperMIMO-LR. Overall, this behaviour is
what we expected from our motivation defined in Fig. 1.
Lastly, we see that MMSE performs relatively better for later
hops t. This can be explained by looking at the way that
on the way that the sequence is constructed following the

3For HyperMIMO we followed the same scheme as in [16], changing only
the lower limit to 10−6.
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Fig. 4: (a) SER as a function of SNR for different detection methods evaluated in a set of channel sequences generated via (4).
(b and c) SER as a function of time for SNR = 5dB and SNR = 10dB, respectively (the same legend as Fig. 4a holds).

Jakes model in (4): the initial matrix H0 is a sample from
the Kronecker channel model, while as we move forward,
the weight of the term et dominates in the equation. In this
way, the channel becomes closer to being i.i.d. Gaussian for
larger values of t. For this particular case, given a fixed SNR,
MMSE achieves better performance because it may be the
case where the correlation is such that more noise power
falls in signal space, so the colored noise case tends to be
worse, while the learning methods (as they were trained on
the Kronecker channel model) tend to perform worse for i.i.d.
Gaussian channel because you move out from the original
distribution.

V. CONCLUSIONS

We proposed a general deep learning based solution for
MIMO detection that achieves a high performance for per-
turbations of a prespecified set of channels while generalizing
to the whole distribution. This was done by regularizing the
training of the hypernetwork to a deep learning-based detector
with solutions for a set of specific channels using that detector.
We evaluated this general architecture with an implementa-
tion that uses HyperMIMO, a hypernetwork-based solution
that incorporates MMNet as its deep learning-based MIMO
detector. We demonstrated that our implementation, named
HyperMIMO-LR, generalizes well to the whole distribution of
channels and outperforms HyperMIMO. Future work include
extending to higher-order systems as well as higher-order
modulation.
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