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Abstract—The weighted sum-rate maximization in coordinated
multicell MIMO networks with intra- and intercell interference
and local channel state at the base stations is considered. Based
on the concept of unrolling applied to the classical weighted
minimum mean squared error (WMMSE) algorithm and ideas
from graph signal processing, we present the GCN-WMMSE
deep network architecture for transceiver design in multicell MU-
MIMO interference channels with local channel state informa-
tion. Similar to the original WMMSE algorithm it facilitates
a distributed implementation in multicell networks. However,
GCN-WMMSE significantly accelerates the convergence and con-
sequently alleviates the communication overhead in a distributed
deployment. Additionally, the architecture is agnostic to different
wireless network topologies while exhibiting a low number of
trainable parameters and high efficiency w.r.t. training data.

I. INTRODUCTION

The design of downlink (DL) transmit and receive beam-
formers in multicell multi-user (MU) multiple-input multiple-
output (MIMO) is considered. In the presence of power
constraints the weighted sum-rate (WSR) maximization utility
is commonly leveraged to obtain optimal beamformers. How-
ever, in the case of practical linear transceivers, the resulting
optimization problem is generally NP-hard [1], and globally
optimal algorithms [2] have an exponential runtime. The
weighted minimum mean squared error (WMMSE) iterative
algorithm [3] is only a locally optimal solution but is widely
regarded as a benchmark for WSR maximization since its
updates have a simple form while achieving a high WSR.
Furthermore, it enables the distributed optimization of beam-
formers in multicell systems while relying on local channel
state information (CSI) and only a limited communication
overhead per iteration. Nevertheless, the WMMSE algorithm,
and iterative optimization-based algorithms in general, require
a large number of iterations to converge, making them difficult
to apply in practice [4].

Recently, the concept of deep algorithm unrolling/unfolding
gained significant interest in the signal processing community
[5], [6]. Here, iterations of problem-specific algorithms are
interpreted as layers of machine learning models and then
infused with approximations and trainable parameters. The
resulting models are trained with data to recover or improve
over the performance of the original algorithm with only a
limited number of layers, thereby reducing the computational
cost. Algorithm unrolling straightforwardly combines expert
knowledge with machine learning concepts, enabling a better
generalization performance, transferability and interpretability
compared to conventional neural network architectures which
is key for future robust wireless communication networks.

A number of recent works applied algorithm unrolling in
the context of DL beamforming. In [7] efficient solutions
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to the WSR maximization in multiple-input single-output
(MISO) networks consisting of transmitter-receiver pairs are
found. This was accomplished by unrolling the inexact cyclic
coordinate descent method applied to the WSR maximiza-
tion problem. The WMMSE algorithm is unfolded in [8]
by approximating one of its updates by truncated projected
gradient descent (PGD), the step sizes of which are learned
using data. This facilitates a trade-off between complexity and
performance, however, the discussion is limited to single-cell
MISO networks. In [9], the updates of the WMMSE algorithm
are replaced by trainable approximations of the original matrix
operations. Although limited to MU-MIMO, the architecture
achieves performance similar to the WMMSE algorithm with
significantly reduced computational complexity. In [10], in-
terfering pairwise single-input single-output (SISO) links are
considered. By incorporating graph convolutional networks
(GCNs) [11] into the WMMSE algorithm structure, the num-
ber of required iterations is significantly reduced.

Nevertheless, to our best knowledge, beamforming algo-
rithms based on deep unrolling have not yet been considered
in general multicell network scenarios with MU-MIMO and
inter- and intracell interference. The contributions of this paper
are, therefore, as follows: 1) Utilizing GCNs, we propose a
completely general architecture, which we denote as GCN-
WMMSE, based on unfolding the WMMSE algorithm for
WSR maximization in multicell MU-MIMO networks that is
agnostic to the wireless scenario configuration. 2) We show
that GCN-WMMSE significantly reduces the communication
overhead over the WMMSE algorithm by reducing the number
of required iterations/layers while exhibiting a similar com-
plexity per iteration. 3) We demonstrate the excellent general-
ization capability and training data efficiency of the proposed
GCN-WMMSE architecture in simulations on Rayleigh fading
channel models.

The rest of the paper is structured as follows: Section II
defines the system model, resource allocation problem and
reviews the WMMSE algorithm. The GCN-WMMSE archi-
tecture is proposed in Section III. Section IV presents the
simulations results. Section V concludes this work.

II. SYSTEM MODEL AND WMMSE ALGORITHM

A. System Model and Downlink Problem Formulation

Consider a wireless cellular system consisting of K cells
with K base stations (BSs), each serving one of K disjoint
subsets {Ik}Kk=1 of user equipments (UEs), for a total of I =∑K

k=1 |Ik| UEs. UE i is equipped with an array of size Ni

and BS k is equipped with an antenna array of size Mk. We
assume complex frequency-flat channels Hik ∈ CNi×Mk from
BS k to UE i, linear DL beamforming from BS k to UE i ∈
Ik of a symbol vector s̆i ∈ CNi with the DL beamformer
matrix Vi ∈ CMk×Ni , and linear receive beamforming with a
matrix Ui ∈ CNi×Ni at UE i under additive complex white
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Gaussian noise ni ∼ CN
(
0, σ2

i I
)

with power σ2
i . Let Qij =

HimVjV
H
j H

H
im be the signal covariance at UE i due to the

signal for UE j originating at BS m with j ∈ Im, then the
constrained maximization of the achievable WSR RΣ becomes

max
{Vi}Ii=1
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I+Qii
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Qij + σ2
i I
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H
i

}
≤ Pk, ∀k ∈ {1, . . . ,K} (1)

where αi > 0 is a predefined weight and Pk is the power budget
of BS k. The bandwidth is 1 without loss of generality.

B. WMMSE Algorithm
The authors of [3] reformulate the problem in (1) into an

equivalent one by introducing a positive semidefinite (PSD)
weight matrix Wi ⪰ 0 per UE i. Let U, W and V denote the
set of receive beamformers {Ui}Ii=1, weight matrices {Wi}Ii=1

and DL beamformers {Vi}Ii=1. By leveraging the blockwise
convexity of the reformulation and the block coordinate de-
scent [12] framework, the convergent WMMSE algorithm [3]
is obtained with sequential updates

(U-Step) ∀i : U(ℓ)
i = (J

(ℓ)
i )−1HikV

(ℓ−1)
i (2a)

(W-Step) ∀i : W(ℓ)
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(ℓ−1)
i )HHH

ikU
(ℓ)
i

)−1

, (2b)

(µ-Step) ∀k : µ
(ℓ)
k = argmax

µk

µk

subject to 0 = f
(l)
CS,k(µk), µk ≥ 0, (2c)

(V-Step) ∀i : V(ℓ)
i =

(
R

(ℓ)
k + µ

(ℓ)
k I
)−1

Ṽ
(ℓ)
i (2d)

for iteration ℓ. Note that the indices k and i are chosen such
that i ∈ Ik. We defined J

(ℓ)
i =

∑K
m=1

∑
j∈Im

Q
(l−1)
ij + σ2

i I as
the receive signal covariance matrix at UE i,
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as the weighted uplink covariance matrix at BS k and
Ṽ

(ℓ)
i = αiH

H
ikU

(ℓ)
i W

(ℓ)
i (4)

as the candidate beamformer matrix of UE i ∈ Ik at BS
k respectively. Equations (2c) and (2d) result from applying
Karush-Kuhn-Tucker conditions to solve for V

(ℓ)
i under the

constraint
∑

i∈Ik
Tr
{
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(ℓ)
i (V
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}
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dual variables µ
(l)
k as well as the complementary slackness
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)
D
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Importantly, the algorithm can be implemented in a dis-
tributed fashion by computing the U-steps and W-steps at the
respective UEs, and BS k computes all Vi where i ∈ Ik. UE
i can locally estimate Ji and only requires information about
its assigned precoding matrix as well as the channel toward
its assigned BS. BS k on the other hand only requires local
CSI, the beamformer candidate matrices Ṽi for i ∈ Ik as well
as the matrices UiWiU

H
i for each UE within its cell radius.

III. PROPOSED GCN-WMMSE ARCHITECTURE

In this section, the proposed Graph-Convolutional-Network-
WMMSE architecture, or GCN-WMMSE in short, is intro-
duced by unrolling the WMMSE algorithm and modifying it.

The architecture and training procedure is explained in Section
III-A1 and III-B, respectively, followed by a brief discussion
in Section III-C.

A. Architecture

1) WMMSE Algorithm Unfolding: We unfold L iterations
of the WMMSE algorithm by interpreting each iteration ℓ with
input V(ℓ−1) and output V(ℓ) as a neural network layer. Figure
1 visualizes the forward pass of the resulting network. Each
layer consists of the update blocks FW(V;S), FU(V,W;S)
and FV(U,W,µ;S), which are the update mappings (2a),
(2b) and (2d) for every UE i, and Fµ(U,W;S), which is
(2c) for every BS k. Compared to previous works [8]–[10],
[13], which are restricted to less general wireless scenarios
in order to simplify the WMMSE algorithm, the general
WMMSE algorithm is considered in this work. In this case,
the mapping Fµ, i.e., problem (2c), generally does not possess
a closed-form solution, hence, the authors of [3] propose
the iterative bisection search to obtain the optimal value
µ
(ℓ,opt)
k . However, since it requires many subiterations P to

approach a sufficient accuracy, we instead propose to utilize a
method based on rational function approximations as in [14]
to accelerate the forward pass of the network. Compared to the
iterative bisection algorithm, it yields a highly accurate result
after only a low number of subiterations.

Next, the FW-blocks and FV-blocks are modified using
concepts from graph convolutional filters (GCFs) and GCNs
[11] to significantly reduce the number of required layers while
maintaining performance.

2) Weight Matrix Graph Filter: The idea of
GCFs is applied to the FW-block. To this end, we
consider the original weight matrix update in (2b)
Ŵ

(ℓ)
=
(
I− (V

(ℓ−1)
i )HHH

ikJ
(l)
i HikV

(ℓ−1)
i

)−1

, where i ∈ Ik,
as a graph shift matrix and introduce the weight matrix GCF

W
(ℓ)
i = aW,ℓ0I+

G∑
g=1

aW,ℓg(
Tr
{
Ŵ

(ℓ)

i

}
/Ni

)g−1

(
Ŵ

(ℓ)

i

)g
(6)

of order G, where aW,ℓg for g = 0, . . . , G and ℓ = 1, . . . , L, are a
learnable filter taps. Thus, (6) replaces the standard WMMSE
weight update (2b). To ensure that the resulting W

(ℓ)
i is PSD,

the filter taps aW,ℓg are restricted to be non-negative (aW,ℓg ≥
0). Additionally, the mean of the eigenvalues Tr

{
Ŵ

(ℓ)

i

}
/Ni

normalizes the filter taps for g ≥ 2 to prevent numerical issues
in case of a high signal-to-noise ratio (SNR).

3) DL Graph Convolutional Neural Network: The V-step
in (2d) can be interpreted as a GCF acting on the candidate
beamformer Ṽ

(ℓ)
i in (4) with the inverse of the modified

weighted uplink covariance matrix R̃
(ℓ)
k = R

(ℓ)
k + µ

(ℓ)
k I in (3)

as the graph shift matrix. The filter is then extended into a
complex-valued GCN layer with F features, leading to the
modified FV-update

v̂
(ℓ)
id = modReLU

(
P̃

(ℓ)
id ,

1

bS

√
Pk

|Ik|
1bT

ℓ

)
cℓ

where P̃
(ℓ)
id = (R̃

(ℓ)
k )−1ṽ

(ℓ)
id aT

V,ℓ1 + ṽ
(ℓ)
id aT

V,ℓ0

(7)

for every i ∈ Ik for all k, which obtains the unscaled
beamformer V̂i =

[
v̂
(ℓ)
i1 , . . . , v̂

(ℓ)
iNi

]
where v̂

(ℓ)
id for d =

1, . . . , Ni belong to the individual streams. Similarly Ṽ
(ℓ)
i =[

ṽ
(ℓ)
i1 , . . . , ṽ

(ℓ)
iNi

]
. The GCN layer corresponds to a filter of

polynomial degree 1 with aV,ℓ1 ∈ CF and aV,ℓ0 ∈ CF being

1632



FU

FW

Fµ FV
V(1)

U(1)

V(1)µ(1)

W(1)

U(1)

FU

FW

Fµ FV

U(2)

V(2)µ(2)

W(2)

U(2)

FU

FW

Fµ FV

U(L)

V(L)µ(L)

W(L)

U(L)

V(L−1)

1th layer 2nd layer L-th layer

P(1)

0
P(2)

P(L−1)

Figure 1. Deep network of the WMMSE algorithm obtained by unrolling L iterations. The blocks FU, FW and FV represent the updates (2a), (2b) and
(2d) for every i. The Fµ-block contains P subiterations for every k. The GCN-WMMSE architecture modifies the FW- and FV-blocks of the original
algorithm. Dashed arrows represent the skip connections of Section III-A4.

trainable complex filter taps, bℓ ∈ RF being a trainable bias,
and cℓ ∈ CF being a trainable vector which recombines the
F features contained in P̃

(ℓ)
id . The generalization performance

is enhanced by scaling the bias by the power budget and
the number of assigned UEs. The auxiliary scaling parameter
bS stabilizes the training in case of applying an optimizer
such as ADAMW [15] which normalizes the gradients. The
elementwise complex-valued nonlinearity modReLU is defined
in [16] and preserves the phase. To ensure feasibility w.r.t. the
power budgets, the power projection step

V
(ℓ)
i =

√
PkV̂

(ℓ)

i /

√√√√max

{∑
i∈Ik

Tr
{
V̂

(ℓ)

i (V̂
(ℓ)

i )H
}
, Pk

}
(8)

for all i is introduced at the output of each FV-block.
4) Skip Connections: Lastly, we integrate additional con-

nections between layers [17] by replacing the input to the
modReLU nonlinearity P̃

(ℓ)
id with P

(ℓ)
id = P̃

(ℓ)
id + P

(ℓ−1)
id Dℓ,

where the trainable matrix Dℓ ∈ CF×F allows for learned
linear combinations of the features of layer ℓ−1. The resulting
direct path enables an additional exchange of gradient infor-
mation between layers, bypassing operations such as matrix
inversions which sometimes lead to noisy gradients. Fig. 1
visualizes the connections with dashed arrows.

B. Model Training

Optimizing the trainable parameter set Γ of a GCN-
WMMSE network M(S;Γ) with L layers, which con-
tains {aV,ℓ1}Lℓ=1, {aV,ℓ0}Lℓ=1, {bℓ}Lℓ=1, {cℓ}Lℓ=1, {Dℓ}Lℓ=2 and
{{aW,ℓg}Gg=0}Lℓ=1, is achieved by the maximization of the
expected rate ES [RΣ] over the distribution of scenario real-
izations p(S), which in practice is approximated by a finite
data set T . In this work, we perform stochastic gradient
descent (SGD) for T steps by descending along the gradient
∇ΓJ(Tt;Γ,L) of the sample-normalized loss function

J(Tt;Γ) =
1

|Tt|
∑

Sn∈Tt

J
(L)
WSR(Sn;Γ)

r
(ℓ)
n,Γ

, (9)

where Tt ⊂ T is a minibatch of scenario realizations at
training step t. The partial loss J

(L)
WSR is the negative WSR

corresponding to (1) achieved on the realization Sn with
the output DL beamformer set V(L), i.e., J

(L)
WSR(Sn;Γ) =

−RΣ(M(Sn;Γ);Sn). The scalar r
(L)
n,Γ equalizes the impact

of all realizations regardless of the achieved WSR and is
determined as

∣∣∣J(L)
WSR(Sn;Γ)

∣∣∣ in the forward pass [18]. The
scaling parameter bS in (7) is obtained during training as
the empirical expectation ES∼T

[√
Pk/ |Ik|

]
dependent on the

power budget of scenarios in the training set T .

To perform SGD, the complex gradient ∇ΓJ(Tt;Γ,L) must
be available. In deep networks, it is usually obtained by
backpropagation which requires the Jacobian of each update
block. This is straightforward for FU, FW and FV. However,
the problem represented by the Fµ-block must generally
be solved iteratively. Empirically, backpropagation through
these subiterations is prone to numerical issues as it involves
divisions by small numbers. As a remedy, we apply the
notion of derivatives of implicit functions [19, Thm. 8.2] to
the complementary slackness condition f

(ℓ)
CS,k(µk) = 0, which

yields closed-form relations of the local gradient. A detailed
treatment of the Fµ-block can be found in our companion
work [20].

C. Discussion

GCN-WMMSE makes use of the permutation equivariance
of GCFs and GCNs [11], leading to the achieved WSR being
unaffected by relabeling of the transceiver antennas which
is a natural property of the wireless system. Simultaneously,
complete transferability of the network to any wireless sce-
nario configuration is enabled. Furthermore, the filters are
globally optimized in comparison to the local optimality of the
block coordinate descent (BCD) operations, which allows for
performance improvements over the original algorithm. Lastly,
the number of trainable parameters in the set Γ is low with
(L− 1)F 2 + L(4F +G+ 1), reducing the risk of overfitting.

IV. EXPERIMENTAL EVALUATION

A. Simulation Setup

The proposed GCN-WMMSE architecture is implemented1

using PyTorch and we leverage the AdamW optimizer [15].
The GCN-WMMSE network models are evaluated in a sce-
nario of 3 BSs positioned at the corners of an equilateral trian-
gle of side length dBS. For each scenario realization, all UEs
are placed uniformly at random inside the sextant centered on
their assigned BS with radius dBS/

√
3. The picocell model [21]

is used to calculate the large-scale path loss PLik between
BS k and UE i. We assume equal BS antenna dimensions
BS Mk = M , BS power budget Pk = PBS, UE antennas
dimensions Ni = N , UE noise variances σ2

i = σ2
UE and sum-

rate weights αi = 1. Each BS serves the same number of UEs.
Assuming rich scattering and Rayleigh fading, the channel
matrix coefficients [Hik]nm are sampled from CN

(
0, 10

PLik
10 dB

)
.

All experiments are conducted using the network and train-
ing hyperparameters and scenario configuration parameters

1To promote reproducible research, the code is publicly available at
https://github.com/lsky96/gcnwmmse.
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Table I. BASE PARAMETER SET FOR GCN-WMMSE NETWORKS,
TRAINING PARAMETERS AND BASE SCENARIO CONFIGURATION.

Base Model Hyperparameters

Number of Layers L 7
Polynomial Degree G 2
Number of Filters F 4

Base Training Hyperparameters

Loss Function Eq. (9)
ADAMW (β1, β2, λ) (0.9, 0.99, 10−3)
Learning Steps T 104

Learning Rate η 0.01, /10 after every 2500 steps
Minibatch Size |Tt| 100
Gradient Clipping Value 1

Base Scenario Configuration

BS Distance dBS 200m
BS Antenna Dimension M 12
BS Tx Power PBS 30dBm
Num. of UEs I 12, equally assigned
UE Antenna Dimension N 2
UE Noise Power σ2

UE −100dBm

Table II. ABSOLUTE AND RELATIVE WSR OF GCN-WMMSE (PROPOSED)
FOR DIFFERENT NUMBERS OF LAYERS L.

# Layers L 3 4 5 6 7 8 9

Abs. Rate RΣ (nat
Hz

) 82.21 87.84 89.98 91.67 92.56 93.46 93.89
Rel. Rate Rrel.

Σ (%) 83.72 89.45 91.63 93.35 94.26 95.17 95.61

summarized in Tab. I, unless specified otherwise. The filter
taps of the DL beamformer GCNs are initialized according
to [16], the biases with 0 and the taps of the weight matrix
GCFs aW,ℓg by 1/(G+1). The input beamformers are given by
normalized maximum-ratio combining (MRC) beamformers
V

(0)
i ∝ HH

ik for i ∈ Ik. The Lagrangian variable µ
(ℓ)
k is

initialized as 10−12 and updated for P = 8 subiterations.
The validation sets contain 103 scenario realizations, the train-
ing sets contain 107 realizations except for the experiments
concerning Tab. III. We compare to the classical WMMSE
algorithm running for 100 iterations. WMMSE RI denotes
the WSR achieved by the WMMSE algorithm averaged over
50 random initializations per scenario realization. WMMSE50
serves as a benchmark and denotes the best WSR achieved
over these 50 initializations, however, it has a high computa-
tional cost. The acronym TR indicates the WSR the WMMSE
algorithm achieves after L iterations, thereby having the same
communication overhead as the GCN-WMMSE networks. The
average achievable WSR is denoted by RΣ, the WSR relative
to the result of WMMSE50 is denoted as Rrel.

Σ . Note that
comparisons with previous architectures based on unrolling
the WMMSE are relegated to the companion work [20].

B. Simulation Results

When varying the number of layers of the proposed GCN-
WMMSE network models, Tab. II shows that the WSR in-
creases consistently from 3 to 9 layers up to 95.61% relative
WSR, whereas WMMSE RI achieves 95.20% relative WSR
only after 100 iterations; WMMSE RI achieves a value com-
parable to L = 7 of the GCN-WMMSE only after 64 iterations.
This demonstrates a significant reduction in iterations, there-
fore, computational cost and communication overhead. The
training set size |T | is considered in Tab. III. For |T | = 100

samples the achieved relative WSR is already 93.26%, which
is close to the value for 107 training samples. This remarkable
data efficiency is enabled by the equivariance properties of the

Table III. ABSOLUTE AND RELATIVE WSR OF GCN-WMMSE
(PROPOSED) FOR A FINITE SET OF TRAINING SAMPLES.

Training Set Size |T | 100 300 500 700 1000

Abs. Rate RΣ (nat
Hz

) 91.58 91.73 92.17 92.09 92.16
Rel. Rate Rrel.

Σ (%) 93.26 93.41 93.85 93.78 93.84

graph filter structures and the preservation of the WMMSE
algorithm structure, which lead to a low number of trainable
parameters (here 229 scalars) as well.

In the following, the considerable generalization capabilities
of the proposed GCN-WMMSE architecture are experimen-
tally validated. We vary individual scenario parameters and
study GCN-WMMSE networks (i) trained on samples with
matching scenario configuration to the validation data, denoted
by MT, and (ii) networks that are trained on samples at a
defined pivot scenario configuration, denoted by PT.

1) BS Power and UE Noise Power: In Fig. 2, we sweep
the BS power budget PBS (leftmost) and UE noise power
(center left) respectively. GCN-WMMSE MT achieves at least
93.64% relative WSR over the entire power budget range,
outpeforming WMMSE RI TR substantially, particularly for
high PBS, and achieving WSRs close to WMMSE RI while
only requiring 7 layers. GCN-WMMSE PT generalizes well to
scenarios which have a higher BS power budget compared to
the scenarios in its training data. However, GCN-WMMSE
PT loses performance when transferring to lower PBS and
achieves a lower WSR than WMMSE RI TR for a offset
of −15 dB. When varying the receiver noise levels σ2

UE,
both GCN-WMMSE MT and GCN-WMMSE PT achieve a
WSR close to WMMSE RI and outperform WMMSE RI TR
over the experimental range. GCN-WMMSE MT outperforms
WMMSE RI in case of high SNR.

2) Network Density: In Fig. 2 (center right) the generaliza-
tion w.r.t. to different BS distance dBS is illustrated. Both the
GCN-WMMSE MT and PT networks closely follow the WSR
of WMMSE RI and achievea WSR above 93.76% relative to
WMMSE50 for distances from 100m to 300m. WMMSE RI
TR is substantially outperformed.

3) Number of UEs: Changing numbers of UEs I are con-
sidered in Fig. 2 (rightmost). GCN-WMMSE MT generalizes
well and even significantly outperforms WMMSE50 for single
user cells. Note that, as an exception, initializing the WMMSE
algorithm with the MRC outperforms WMMSE RI in this case
with 93.01%. GCN-WMMSE PT outperforms WMMSE RI TR
by 13% for I = 18 and generalizes well to lower I, achieving
Rrel.

Σ = 96.09%. Thus, it is advantageous to train with the
maximum number of UEs to maximize the transferability,
disregarding the increased complexity of training the network.

4) Array Dimensions: Varying BS antenna dimension are
studied for I = 6 UEs in Fig. 3 (left). GCN-WMMSE MT
follows WMMSE RI for M < 12 and substantially outper-
forms WMMSE RI for M = 12. In this case, the classical
WMMSE algorithm tends to find suboptimal beamformers
with significant differences between individual UEs rates per
scenario realization while GCN-WMMSE favors solutions
with more equally distributed rates. However, GCN-WMMSE
PT outperforms GCN-WMMSE MT for M = 16.

In Fig. 3 (right) the UE antenna array size is swept for I = 9

UEs. GCN-WMMSE PT and GCN-WMMSE MT achieve a
significantly higher WSR than WMMSE RI TR with at least
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distance dBS (center right) and number of UEs (rightmost). The arrows indicate the configuration for the training of GCN-WMMSE PT networks.
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Figure 3. Impact of different numbers of antenna elements at the BSs (left)
and at the UEs (right) on GCN-WMMSE (proposed). The arrows indicate the
configuration for the training of GCN-WMMSE PT networks.

91.43% relative to WMMSE50 with exception of the MISO
link case.

The observation that GCN-WMMSE MT is outperformed
by GCN-WMMSE PT for scenario configurations with high
degrees of freedom, i.e., when a single BS antenna array
exceeds the total number of UE antennas, can be attributed
to (2c) and (2d) attempting to solve the near hard case
of a quadratically constrained quadratic program [22]. To
avoid utilization of costly specialized iterative solvers, the ill-
conditioned scenario samples can be removed in the backward
pass [20]. The most effective solution, however, is to leverage
the demonstrated generalization capabilities of GCN-WMMSE
by training with scenarios with lower degrees of freedom.

V. CONCLUSION

The deep network architecture GCN-WMMSE, which is
based on unrolling the classical WMMSE algorithm, for beam-
forming in multicell MU-MIMO wireless networks is pro-
posed. By reducing the number of required layers/iterations,
GCN-WMMSE reduces the computational cost and communi-
cation overhead for distributed deployments compared to the
WMMSE algorithm. At the same time, GCN-WMMSE ex-
hibits excellent transferability and generalization performance
across changing scenario configurations in most instances.
Future investigations could address the more practical case
of ergodic instead of instantaneous capacities.
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