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Abstract—In communication systems, there are many tasks,
like modulation classification, for which Deep Neural Networks
(DNNs) have obtained promising performance. However, these
models have been shown to be susceptible to adversarial pertur-
bations, namely imperceptible additive noise crafted to induce
misclassification. This raises questions about the security but also
about the general trust in model predictions. We propose to use
adversarial training, which consists of fine-tuning the model with
adversarial perturbations, to increase the robustness of automatic
modulation classification (AMC) models. We show that current
state-of-the-art models can effectively benefit from adversarial
training, which mitigates the robustness issues for some families
of modulations. We use adversarial perturbations to visualize the
learned features, and we found that the signal symbols are shifted
towards the nearest classes in constellation space, like maximum
likelihood methods when adversarial training is enabled. This
confirms that robust models are not only more secure, but also
more interpretable, building their decisions on signal statistics
that are actually relevant to modulation classification.

Index Terms—Modulation classification, robustness, adversar-
ial training, deep learning, security

I. INTRODUCTION

Communication systems are important for both civil and
military applications. Deep learning [1] has proved its use-
fulness across multiple fields of research in the last decade
and it presents numerous advantages that are attractive for
wireless communication systems. Compared with the previous
state-of-the-art approaches, which are mainly based on feature
extraction from the signals [2], Deep Neural Networks (DNNs)
are capable of end-to-end learning and their performance
scales with high quantities of data. DNNs have been successful
in multiple tasks like wireless resource allocation [3] anomaly
detection [4], or automatic modulation classification (AMC)
[5], which is the main focus of this work. AMC estimates
modulation schemes from the received data and has multiple
applications ranging from detecting daily radio stations and
managing spectrum resources, to eavesdropping and interfer-
ing with radio communications.

Recent studies have highlighted security issues in DNNs
models [6]–[11]. Specifically, those models have been shown
to be vulnerable to adversarial examples, which are carefully
crafted but almost imperceptible perturbations, namely adver-
sarial perturbations, that are added to a real data sample. For
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AMC, a perturbation can be crafted by solving the following
optimization:

δ∗i = argmax
δi

Lyi,θ(xi + δi) s.t. ‖δi‖∞ ≤ ε (1)

where δ∗i is the adversarial perturbation that is added to the
clean signal xi, Lyi,θ is the model loss function that depends
on yi, the signal modulation, and θ, the model parameters, and
ε is a fixed value that constrains the norm of the perturbation
to be small and imperceptible.

This security issue combined with the black-box nature of
DNNs raises a critical question: can we actually trust the
predictions of neural networks? The fact that a negligible
change in the input alters the prediction, implies that DNNs
base their decisions on features that do not seem to be all
aligned with the target task. Understanding the reasons for
such vulnerabilities and making systems more robust form an
active line of research [12], [13].

In this work, we propose a new framework, SafeAMC, that
addresses these trust and security issues. It provides a way
to reduce the AMC model susceptibility against adversarial
perturbations and properly measures both the model robustness
and how secure it would be in practice, in a real communica-
tion system. Our main contributions are the followings:
• We are the first to differentiate between practical security

and robustness in AMC, using specific properties of com-
munication systems;

• We propose adversarial training to defend against adversarial
examples in AMC, and show that it increases the robustness
and security of state-of-the-art AMC models using popular
modulation classification datasets;

• Using feature analysis on the constellation diagram space,
we show that robust models learn better features. They are
correlated with the optimal ones computed by Bayes-optimal
maximum likelihood methods;

• Instead of using a fixed constraint for adversarial perturba-
tions, we promote constraining the perturbation with respect
to the signal energy, which is a better measure of adversarial
perceptibility in AMC.

In Section II we discuss some related works to AMC and
adversarial perturbations. Then, in Section III, we introduce
our adversarial learning framework with two dedicated use
cases, namely robustness and security against adversarial at-
tacks. We provide results of the experiments realized along

1636ISBN: 978-1-6654-6798-8 EUSIPCO 2022



with our newly defined framework in Section IV. The feature
importance of standardly and adversarially trained models is
presented in Section V. We finally conclude and provide future
work directions in Section VI.

II. RELATED WORK

The task of recognizing modulations can be modeled
mathematically using maximum likelihood. It computes the
likelihood function of the received signal with all possible
modulations and estimates the most likely modulation. While
in theory this is Bayes-optimal, it is computationally expensive
and requires prior knowledge of the channel characteristics, so
sub-optimal approximations are used in practice [2], [14].

Deep learning [1] has been proposed as an alternative
solution since it has linear computational complexity and can
be trained end-to-end. It learns the channel conditions directly
from the data instead of using priors, making it more flexible
for AMC. On the one hand, inspired by successes in speech
recognition, some works [15], [16] propose architectures based
on long short-term memory networks (LSTMs) [17] for mod-
ulation classification. On the other hand, other works [8],
[18], [19] employ convolutional neural networks (CNNs) [20],
which have the advantage of inducing translation invariance on
the input. The current state-of-the-art in AMC [5] uses a model
based on the ResNet Deep Network architecture [21].

Despite their good performance in numerous application
domains, DNNs are black-box models, giving less explainable
predictions than simpler models, and they are vulnerable to
adversarial perturbations [6], [7]. These perturbations have the
property of influencing discriminative features of the model
[12], and put into question the relevance of the features learned
by the classifier [13]. Multiple “defenses” against adversar-
ial perturbations have been proposed in different application
domains. Some authors advocate for randomized smoothing
[22], [23], while others propose some form of loss function
regularization [24], [25]. Currently, the best defense generally
relies on adversarial training [26], where the model is fined-
tuned on adversarial perturbations to increase its robustness.

In the specific case of modulation classification, adversarial
perturbations have also been shown to require much less
power than additive white gaussian noise (AWGN) to fool
the network [8], [10], [11]. Adversarial perturbations in this
case are constrained relative to the signal power, using the
signal-to-perturbation ratio (SPR) metric [8]. Some defenses
have been proposed for AMC models. On the one hand, some
methods preprocess the input, like gaussian smoothing [27],
to reduce the effectiveness of the adversarial perturbations.
On the other hand, some methods modify the deep network
model itself by adding a pretrained autoencoder [28] or using
an Assorted Deep Ensemble (ADE) [29], in which different
model architectures and signal domains are combined. These
defense methods can protect against adversarial examples, but
they may be vulnerable if the attacker has knowledge of the
full model. A concurrent work [30] solves this issue by using
adversarial training, which our work extends by using the SPR

metric to craft the attacks and evaluating on the state-of-the-art
networks and benchmarking datasets.

In this work, we present SafeAMC, a new framework
based on adversarial training to make DNNs less susceptible
to adversarial perturbations. We show that it increases the
robustness of these models, and makes them safer.

III. FRAMEWORK

In this Section we present our framework that relies on
adversarial training to improve DNNs robustness and evaluates
how robust and secure it is against adversarial attacks.

A. Adversarial training

The objective of adversarial training is to find the model
parameters that minimize the susceptibility of the model to
adversarial perturbations. That is, adversarial training tries to
solve the following min-max optimization problem over the
N training samples:

min
θ

1

N

∑
i

max
‖δi‖∞≤ε

Lyi,θ(xi + δi) (2)

This formulation is a generalization of standard training, for
which adversarial perturbations are not considered (δi = 0).

In practice, the procedure to train a model adversarially is
straightforward. First, we take a training sample and compute
the adversarial perturbation using an optimization algorithm
like FGSM or Projected Gradient Descent (PGD) [26]. Then,
we compute the model classification loss on that perturbed
sample. Next, we backpropagate this loss with respect to the
model parameters. Finally, we update them to minimize the
loss using gradient descent. This whole process is repeated
for all training samples multiple times.

B. Robustness and security evaluation in AMC

While robustness is derived from the model susceptibility
to adversarial perturbations, in practice, when measuring how
secure it is, we find unrealistic to assume the attacker has direct
access to the model. This motivates us to use two different
frameworks to measure robustness and security [11], which
are shown in Figure 1. The robustness framework is similar
to the traditional approach, adding the attack just before the
model. We use it to measure the theoretical robustness of
our model. The security framework measures how secure the
model is against malicious adversarial attacks. We simulate a
man-in-the-middle attack, where Gaussian noise is added to
the adversarial example sent by the attacker.

Our framework, SafeAMC, trains the model using the
robustness framework to learn features that are invariant to
small perturbations according to (2). Then, it evaluates the
model on both frameworks to measure the robustness and the
security of the model.

IV. PERFORMANCE ANALYSIS

A. Adversarial attacks fool towards similar modulations

We examine how the model predictions change between nor-
mal and adversarial settings with and without using SafeAMC.
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(a) Robustness framework

(b) Security framework

Fig. 1: Frameworks used to measure robustness and security.
The green and red blocks illustrate the communication system
and the attacker, respectively. Tx and Rx are the transmitter
and receiver, while DNN is the AMC model. We analyze
the scenario where the attacker surrogate model (DNN’) is
identical to our AMC model (white-box attack).

For the sake of clarity, we will only measure the robustness
in this experiment. For the dataset, we use the RML2016.10a
dataset [31], which has 220000 IQ signals of 128 time samples
each, ranging from -20dB to 18dB signal-to-noise ratio (SNR),
with 11 possible modulations to predict. We use a 70-30%
train-test split, using 5% of the training as validation for hyper-
parameter tuning. For the model, we use the VT CNN2 BF
architecture [10]. All adversarial examples are crafted with
20 dB SPR, since it affects significantly the performance of
the model without compromising the inperceptibility of the
perturbations [11]. We use l∞ PGD with 7 iterations (PGD-7)
of step size 0.36 (relative to the l∞ ball radius) and PGD-20
of step size 0.125 for the adversarial examples crafted during
training and testing, respectively.

On the one hand, when SafeAMC is not used (Figure 2), the
model is consistently fooled towards modulation classes with
similar constellation diagrams (e.g. BPSK towards PAM4)
when adversarial attacks are used. On the other hand, using
SafeAMC (Figure 3) greatly improves the model robustness
against adversarial perturbations at the cost of a small per-
formance penalty on the original data. We observe that, for
QAM16/QAM64, 20 dB SPR is too strong and can change
the underlying modulation of the signal. Thus, for those
modulations, the best defense can at most obtain random
chance adversarial performance.

B. Robustness and security evaluation with SafeAMC

For our next experiment, we do a full evaluation of the ro-
bustness and security when using SafeAMC with two state-of-
the-art DNN models, the VT CNN2 BF and ResNet models.
For the data, we use the more difficult RML2018.01a dataset
[5], which contains more than 2.5 million IQ signals of 1024
time samples each, ranging from -20dB to 30dB SNR, with 24
possible modulations. We only use 1 million signals as training
set as proposed in [5], and split the rest in 5% for validation
and 95% for testing. The adversarial settings are the same as
the previous experiment, but we also consider training and
testing with 15 dB and 25 dB SPR adversarial perturbations.

Fig. 2: Confusion matrices of the VT CNN2 BF model before
(left) and after (right) adding PGD-20 l∞ adversarial pertur-
bations on the RML2016.10a dataset. Results for IQ signals
with SNR ≥ 0dB.

Fig. 3: Confusion matrices of the VT CNN2 BF model
trained with SafeAMC before (left) and after (right) adding
PGD-20 l∞ adversarial perturbations on the RML2016.10a
dataset. Results for IQ signals with SNR ≥ 0dB.

For the security framework, we add 20 dB SNR AWGN to the
signal transmitted by the attacker to model the channel noise.
The comparison of the accuracy of the AMC models on all
the training schemes, different testing scenarios, and different
SafeAMC frameworks is shown in Table I.

The results of this more extensive analysis show some clear
patterns. First, the added AWGN of the security framework
helps reduce the model fooling rate, showing that attacking
the model is less effective in practice. This difference is more
significant for standardly trained models since adversarially
trained models rely on signal features that are less susceptible
to adversarial perturbations and, by extension, to small AWGN
noise. Second, the higher the perturbation strength used for
testing, the higher the fooling rate. This is intuitive since the
attacker is less constrained. Third, while adversarial training
makes the model less susceptible to attacks, using stronger per-
turbations during training does not guarantee more robustness.
Our ResNet model results exemplify this last point and show
that, when using SafeAMC, the perturbation strength should
be treated as a hyperparameter and tuned accordingly.

V. FEATURE ANALYSIS

We now analyze the features learned by a VT CNN2 BF
neural network and show that, when trained with SafeAMC,
they are more interpretable, since they correlate with the signal
statistics used by the maximum likelihood (ML) classifier.

Since adversarial perturbations’ objective is to change the
model prediction, they essentially remove features from the
correct class and add features from other classes to fool the
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Model Train attack Accuracy Robustness Framework Accuracy Security Framework Accuracy
25dB SPR 20dB SPR 15dB SPR 25dB SPR 20dB SPR 15dB SPR

VT CNN2 BF
None 45.2% 9.9% 5.1% 2.0% 13.1% 6.9% 3.3%

20dB SPR 37.2% 29.2% 25.1% 13.7% 30.3% 26.8% 15.9%
15dB SPR 32.4% 30.4% 27.8% 21.4% 30.8% 28.8% 22.7%

ResNet
None 60.8% 24.6% 17.7% 10.6% 34.1% 25.1% 15.4%

20dB SPR 36.1% 34.2% 32.5% 28.6% 34.0% 32.8% 29.3%
15dB SPR 31.2% 30.5% 30.0% 28.1% 30.1% 29.6% 28.1%

TABLE I: Robustness and security tested on different levels of attack strength for the VT CNN2 BF and ResNet models on
the RML2018.01a dataset. The train and test attacks were crafted using l∞ PGD-7 and l∞ PGD-20, respectively.

network. Thus, adversarial perturbations can help us under-
stand what features the model has learned, an approach that
is supported by several works in other application domains
like computer vision [12], [32], [33]. The advantage AMC
has over other application domains is that we can compare
the model features with the ideal ones, which can be obtained
by adversarially perturbing the Bayes-optimal ML method.

However, IQ signals are very high-dimensional, which
makes visualizing the comparison untractable. Luckily, they
can be divided into smaller equally long subunits, the signal
symbols. The receiver takes each of these symbols and con-
verts them into a pair of values (in-phase and quadrature com-
ponents), that can be displayed as points in a two-dimensional
plane, the constellation diagram [34]. For a given modulation
of 2N number of states, only 2N different constellation pairs
can be sent (the modulation states), each encoding N bits
of information. In practice, due to communication noise, the
position of the received constellation pairs is slightly shifted.
Assuming this noise is AWGN, to recognize the original
modulation, ML compares every received constellation point
with the possible states defined by each modulation and deter-
mines which modulation is the most probable. This probability
will be higher if each received point is very close to the
modulation states. Thus, its adversarial perturbation will shift
each constellation point closer to other modulation states.

We created a custom simulated dataset (CRML2018) to
be able to easily compare the adversarial perturbations gen-
erated with ML to the ones generated by a VT CNN2 BF
model trained with and without our SafeAMC framework. The
dataset has 10000 signals of 1024 time samples for each of the
16 digital modulations used in the RML2018.01a dataset. For
simplicity, we consider a 20 dB SNR AWGN channel. We use
a 70-30% train-test split, using 5% of the training as validation.
We generated FGSM adversarial examples of 20 dB SPR with
the objective of maximizing the BPSK modulation probability.
Figure 4 shows the constellation diagrams for two different
signals and models, where the possible states of the BPSK
modulation are in red, the received symbols in yellow and the
VT CNN2 BF adversarially perturbed symbols in blue. For
the rows, we show a BPSK and a QPSK signal from the test
set, and for the columns, we used a model trained with and
without using SafeAMC.

The constellation diagrams show that SafeAMC helps the
model learn features that are more aligned with the Bayes-
optimal model, because the adversarial perturbations also shift

(a) BPSK. Std. trained. (b) BPSK. Using SafeAMC

(c) QPSK. Std. trained. (d) QPSK. Using SafeAMC

Fig. 4: Superposed constellation diagrams of both original
(yellow) and adversarially perturbed (blue) BPSK and QPSK
signals, for differently trained VT CNN2 BF models. Despite
the adversarial perturbation maximizing the BPSK class pre-
diction, only when using the model trained with SafeAMC we
observe it shifts the symbols closer to the BPSK possible states
(red points). Thus, using SafeAMC helps the model learn
better features, that are also used by maximum likelihood.

the symbols towards the BPSK possible states. For the gener-
ated BPSK signal, the perturbation of the standardly trained
model shifts the symbols seemingly in random directions, not
reducing the energy of the AWGN corruption but increasing
the model confidence on the BPSK prediction. In contrast,
the perturbation of the adversarially trained model is more
confident after reducing the variance of the quadrature com-
ponent. However, one would expect that in-phase component
variance should be reduced too. We believe this is not the case
because of the class unbalance in the dataset. In our dataset
only the BPSK and PAM4 signals have almost no quadrature
component, making it much more important than the in-phase
component for prediction. Finally, for the generated QPSK
signal, when comparing the two perturbations, we can observe
that the shift towards BPSK is bigger in the adversarially
trained model. However, the adversarial model is not fooled
into predicting it as BPSK, while the standard model is fooled
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by the perturbation with a smaller shift.
To sum up, SafeAMC does not only make the model less

susceptible to adversarial attacks, but it also learns features that
are better aligned with the task. This can be especially useful
when we want to deploy our model on unknown communi-
cation channel conditions, where there is a distribution shift
between the training and test data. We expect robust features
to transfer better on varying channel conditions, thus reducing
the decrease in performance.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose adversarial training to make AMC
models more robust against adversarial perturbations. We show
that it greatly increases the robustness of the models and makes
them less susceptible to adversarial attacks in real scenarios.
Furthermore, we show that robust models learn better features
for modulation classification. That is, their features correlate
more with the features used by the Bayes-optimal ML model.
Thus, showing that robustness may be the key to ensuring that
DNNs learn features that are well-aligned with the task, and
possibly transfer better between different channel conditions.

In the future, our analysis could be expanded beyond small
l∞ norm adversarial perturbations to other types of corrup-
tions that are common in AMC and could have non-uniform
constraints (e.g., Rayleigh or Rician channel corruptions).
Moreover, to avoid changing the true class of high-order
modulations when using adversarial perturbations, a per-class
SPR based on the possible modulations could be defined to
improve our robustness and security metrics.
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